Adaptive Filter with Type-2 Fuzzy System and Optimization-Based Kernel Interpolation for Satellite Image Denoising

2020 ◽  
Vol 63 (6) ◽  
pp. 913-926
Author(s):  
T Mahalakshmi ◽  
Alluri Sreenivas

Abstract Satellite image denoising is a recent trend in image processing, but faces many challenges due to the environmental factors. Previous works have developed many filters for denoising the hyperspectral satellite images. Accordingly, this work utilizes an adaptive filter with the type 2 fuzzy system and the optimization-based kernel interpolation for the satellite image denoising. Here, the image denoising has been done through three steps, namely noise identification, noise correction and image enhancement. Initially, the type 2 fuzzy system identifies the noisy pixels in the satellite image and converts the image into a binary image, which is passed through the adaptive nonlocal mean filter (ANLMF) for the noise correction. Finally, the kernel-based interpolation scheme carries out the image enhancement, which is done through the proposed chronological Jaya optimization algorithm (chronological JOA) that is developed by modifying Jaya optimization algorithm (JOA) with the chronological idea. The performance of the proposed denoising scheme is analyzed by considering the satellite images from two standard databases, namely Indian pines database and NRSC/ISRO satellite database. Also, the comparative analysis is performed with the state-of-the-art denoising methods using the evaluation metrics, peak signal to noise ratio (PSNR), structural similarity index (SSIM) and second derivative-like measure of enhancement (SDME). From the results, it is exposed that the proposed adaptive filter with the chronological JOA has the improved performance with the PSNR of 22.0408 dB, SDME of 244.133 dB and SSIM of 0.872.

2021 ◽  
pp. 601-614
Author(s):  
Rekh Ram Janghel ◽  
Saroj Kumar Pandey ◽  
Aayush Jain ◽  
Aditi Gupta ◽  
Avishi Bansal

2019 ◽  
Vol 11 (9) ◽  
pp. 1134 ◽  
Author(s):  
Heming Jia ◽  
Chunbo Lang ◽  
Diego Oliva ◽  
Wenlong Song ◽  
Xiaoxu Peng

An efficient satellite image segmentation method based on a hybrid grasshopper optimization algorithm (GOA) and minimum cross entropy (MCE) is proposed in this paper. The proposal is known as GOA–jDE, and it merges GOA with self-adaptive differential evolution (jDE) to improve the search efficiency, preserving the population diversity especially in the later iterations. A series of experiments is conducted on various satellite images for evaluating the performance of the algorithm. Both low and high levels of the segmentation are taken into account, increasing the dimensionality of the problem. The proposed approach is compared with the standard color image thresholding methods, as well as the advanced satellite image thresholding techniques based on different criteria. Friedman test and Wilcoxon’s rank sum test are performed to assess the significant difference between the algorithms. The superiority of the proposed method is illustrated from different aspects, such as average fitness function value, peak signal to noise ratio (PSNR), structural similarity index (SSIM), feature similarity index (FSIM), standard deviation (STD), convergence performance, and computation time. Furthermore, natural images from the Berkeley segmentation dataset are also used to validate the strong robustness of the proposed method.


2019 ◽  
Vol 63 (6) ◽  
pp. 60411-1-60411-11
Author(s):  
Thaweesak Trongtirakul ◽  
Werapon Chiracharit ◽  
Susan Imberman ◽  
Sos Agaian

Abstract Aerial and satellite photographs suffer from uncontrollable weather conditions. Frequently, illumination of the same region can be totally different. This is usually due to shadowing self-obstruction or light reflection. Existing image enhancement methods fail to improve hidden details and local contrast at the same visualization level. They are not developed to enhance through local dark or light regions simultaneously. Also, the current aerial and satellite image enhancement methods have several limitations. For instance, these include intensity saturation, non-uniform brightness, halo effect, blur edges, and so on. This article introduces a fractional contrast stretching concept for aerial and satellite image enhancement based on a novel automated non-uniform luminance normalization that is not provided by the user as input parameters. The introduced approach contains several new techniques: (i) no reference non-linearly fractional contrast stretching with automatic non-uniform luminance normalization and (ii) non-linearly local contrast stretching for spatial details and edge sharpening. The proposed algorithm was tested on the orthorectified aerial photograph database with a pixel resolution of 1 meter or finer from across the United States during 2000‐2016. The simulation results illustrate the efficiency of the proposed algorithm and its advantages for cutting-edge aerial and satellite image enhancement, resulting in visualization quality.


2020 ◽  
Vol 2020 (10) ◽  
pp. 60411-1-60411-11
Author(s):  
Thaweesak Trongtirakul ◽  
Werapon Chiracharit ◽  
Susan Imberman ◽  
Sos Agaian

Aerial and satellite photographs suffer from uncontrollable weather conditions. Frequently, illumination of the same region can be totally different. This is usually due to shadowing self-obstruction or light reflection. Existing image enhancement methods fail to improve hidden details and local contrast at the same visualization level. They are not developed to enhance through local dark or light regions simultaneously. Also, the current aerial and satellite image enhancement methods have several limitations. For instance, these include intensity saturation, non-uniform brightness, halo effect, blur edges, and so on. This article introduces a fractional contrast stretching concept for aerial and satellite image enhancement based on a novel automated non-uniform luminance normalization that is not provided by the user as input parameters. The introduced approach contains several new techniques: (i) no reference non-linearly fractional contrast stretching with automatic non-uniform luminance normalization and (ii) non-linearly local contrast stretching for spatial details and edge sharpening. The proposed algorithm was tested on the orthorectified aerial photograph database with a pixel resolution of 1 meter or finer from across the United States during 2000–2016. The simulation results illustrate the efficiency of the proposed algorithm and its advantages for cutting-edge aerial and satellite image enhancement, resulting in visualization quality.


2019 ◽  
Vol 224 ◽  
pp. 04010
Author(s):  
Viacheslav Voronin

The quality of remotely sensed satellite images depends on the reflected electromagnetic radiation from the earth’s surface features. Lack of consistent and similar amounts of energy reflected by different features from the earth’s surface results in a poor contrast satellite image. Image enhancement is the image processing of improving the quality that the results are more suitable for display or further image analysis. In this paper, we present a detailed model for color image enhancement using the quaternion framework. We introduce a novel quaternionic frequency enhancement algorithm that can combine the color channels and the local and global image processing. The basic idea is to apply the α-rooting image enhancement approach for different image blocks. For this purpose, we split image in moving windows on disjoint blocks. The parameter alfa for every block and the weights for every local and global enhanced image driven through optimization of measure of enhancement (EMEC). Some presented experimental results illustrate the performance of the proposed approach on color satellite images in comparison with the state-of-the-art methods.


2020 ◽  
Vol 8 (5) ◽  
pp. 4430-4434

Satellite Images (SI) play a vital role in various civilian and military applications for weather forecasting, monitoring of resources of the earth, environmental studies, observing natural disasters and natural calamities, etc. When these SI are used in military applications and almost all other applications for efficient study, the big challenge is its resolution. In wavelet transforms based satellite image enhancement techniques, choosing a proper wavelet transform plays a key role and vary with the image to image. To improve the resolution, a novel robust optimized wavelet decomposition and a bicubic interpolation-based satellite image enhancement method is proposed. In this method, the Stochastic Diffusion Search (SDS) algorithm is used to get the optimized wavelet decomposition of the image into different subbands and bicubic interpolation is used to improve the resolution. Image is decomposed using the optimized wavelet filter bank based on the SDS algorithm, decomposed sub-bands are interpolated with bicubic interpolation and inverse wavelet transform is applied to compose the interpolated sub-bands into a high-resolution image. The proposed method is tested on satellite images and other images also. Compared to the proposed method with the existing methods and proved that the proposed method is superior to existing methods and applicable to any type of image.


2019 ◽  
Vol 16 (9) ◽  
pp. 4003-4007 ◽  
Author(s):  
Neetu Manocha ◽  
Rajeev Gupta

Due to environment untidiness and inappropriate setting or dealing of camera, a satellite image contains blur or other types of noises. These images are captured by satellites consist lots of information about the surface of earth or other planets. But, due to blur or noise, the quality of these images is degraded. Now days, there are many fields in which satellite images are used, which effects the environment. The accuracy and effective visual display of satellite images with high image resolution using CBIR technique is major concern. This paper presents a comparative analysis of existing satellite image enhancement techniques to reduce the blur of an image on the basis of accuracy and response time. The aim of research work is to eliminate the noise without losing high frequency details and to enhance the image for effective visual display.


From the last few decades, Satellite images are being used widely in various applications like monitoring of forest areas, weather forecasting, polar bears counting, etc. In those applications to get more details of images efficiently, satellite images should be enhanced up to the required level as the images captured by the satellites are covered very large areas and those are very low-resolution images due to the high altitudes of satellites from the earth. We proposed a method of an image enhancement which includes both resolution enhancement and contrast enhancement. In this method, Stationary Wavelet Transform (SWT) in combination with Lifting Wavelet Transform (LWT) is used for image decomposition into low-frequency sub band images and high-frequency sub band images to separate smooth regions and sharp edges to interpolate regions and edges separately to reduce blurring effect in edges and noise in smooth regions. To get smoother details and sharper edges, Gaussian Mixture Model (GMM) is used for interpolation in resolution enhancement process and SWT with the combination of Contrasts Limited Adaptive Histogram Equalization (CLAHE) for contrast enhancement process. SWT in combination with LWT improves the resolution effectively and also minimizes the execution time drastically than existing methods due to the shift invariance of SWT and reduced computations in LWT and GMM interpolation results from sharper edges and smoother details. SWT is used in combination with CLAHE to enhance the contrast and mitigate the noise effects than existing methods. The proposed method gives superior results and compared with existing techniques with PSNR, Noise Estimation, and visual results


Sign in / Sign up

Export Citation Format

Share Document