Migratory status determines resource selection by American Woodcock at an important fall stopover, Cape May, New Jersey

The Condor ◽  
2020 ◽  
Author(s):  
Brian B Allen ◽  
Daniel G McAuley ◽  
Erik J Blomberg

Abstract Migration is a period of high activity and exposure during which risks and energetic demand on individuals may be greater than during nonmigratory periods. Stopover locations can help mitigate these threats by providing supplemental energy en route to the animal’s end destination. Effective conservation of migratory species therefore requires an understanding of use of space that provides resources to migratory animals at stopover sites. We conducted a radio-telemetry study of a short-distance migrant, the American Woodcock (Scolopax minor), at an important stopover site, the Cape May Peninsula, New Jersey. Our objectives were to describe land-cover types used by American Woodcock and evaluate home range habitat selection for individuals that stopover during fall migration and those that choose to overwinter. We radio-marked 271 individuals and collected 1,949 locations from these birds (0–21 points individual–1) over 4 yr (2010 to 2013) to inform resource selection functions of land-cover types and other landscape characteristics by this species. We evaluated these relationships at multiple spatial extents for (1) birds known to have ultimately left the peninsula (presumed migrants), and (2) birds known to have remained on the peninsula into the winter (presumed winter residents). We found that migrants selected deciduous wetland forest, agriculture, mixed shrub, coniferous wetland forest, and coniferous shrub, while wintering residents selected deciduous wetland forest, coniferous shrub, and deciduous shrub. We used these results to develop predictive models of potential habitat: 7.80% of the peninsula was predicted to be potential stopover habitat for American Woodcock (95% classification accuracy) and 4.96% of the peninsula was predicted to be potential wintering habitat (85% classification accuracy). Our study is the first to report habitat relationships for migratory American Woodcock in the coastal U.S. and provides important spatial tools for local and regional managers to support migratory and winter resident woodcock populations into the future.

2020 ◽  
Vol 12 (8) ◽  
pp. 1333 ◽  
Author(s):  
Bulent Ayhan ◽  
Chiman Kwan

In this work, a semantic segmentation-based deep learning method, DeepLabV3+, is applied to classify three vegetation land covers, which are tree, shrub, and grass using only three band color (RGB) images. DeepLabV3+’s detection performance has been studied on low and high resolution datasets that both contain tree, shrub, and grass and some other land cover types. The two datasets are heavily imbalanced where shrub pixels are much fewer than tree and grass pixels. A simple weighting strategy known as median frequency weighting was incorporated into DeepLabV3+ to mitigate the data imbalance issue, which originally used uniform weights. The tree, shrub, grass classification performances are compared when all land cover types are included in the classification and also when classification is limited to the three vegetation classes with both uniform and median frequency weights. Among the three vegetation types, shrub is found to be the most challenging one to classify correctly whereas correct classification accuracy was highest for tree. It is observed that even though the median frequency weighting did not improve the overall accuracy, it resulted in better classification accuracy for the underrepresented classes such as shrub in our case and it also significantly increased the average class accuracy. The classification performance and computation time comparison of DeepLabV3+ with two other pixel-based classification methods on sampled pixels of the three vegetation classes showed that DeepLabV3+ achieves significantly higher accuracy than these methods with a trade-off for longer model training time.


2019 ◽  
Vol 66 (4) ◽  
pp. 355-362 ◽  
Author(s):  
Fanjuan Meng ◽  
Xin Wang ◽  
Nyambayar Batbayar ◽  
Tseveenmyadag Natsagdorj ◽  
Batmunkh Davaasuren ◽  
...  

Abstract While many avian populations follow narrow, well-defined “migratory corridors,” individuals from other populations undertake highly divergent individual migration routes, using widely dispersed stopover sites en route between breeding and wintering areas, although the reasons for these differences are rarely investigated. We combined individual GPS-tracked migration data from Mongolian-breeding common shelduck Tadorna tadorna and remote sensing datasets, to investigate habitat selection at inland stopover sites used by these birds during dispersed autumn migration, to explain their divergent migration patterns. We used generalized linear mixed models to investigate population-level resource selection, and generalized linear models to investigate stopover-site-level resource selection. The population-level model showed that water recurrence had the strongest positive effect on determining birds’ occupancy at staging sites, while cultivated land and grassland land cover type had strongest negative effects; effects of other land cover types were negative but weaker, particularly effects of water seasonality and presence of a human footprint, which were positive but weak or non-significant, respectively. Although stopover-site-level models showed variable resource selection patterns, the variance partitioning and cross-prediction AUC scores corroborated high inter-individual consistency in habitat selection at inland stopover sites during the dispersed autumn migration. These results suggest that the geographically widespread distribution (and generally rarity) of suitable habitats explained the spatially divergent autumn migrations of Mongolian breeding common shelduck, rather than the species showing flexible autumn staging habitat occupancy.


2009 ◽  
Vol 17 (2) ◽  
pp. 256-260 ◽  
Author(s):  
Feng WANG ◽  
Shu-Qi WANG ◽  
Xiao-Zeng HAN ◽  
Feng-Xian WANG ◽  
Ke-Qiang ZHANG

2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


2021 ◽  
Vol 17 (4) ◽  
pp. 1-28
Author(s):  
Yuxiang Lin ◽  
Wei Dong ◽  
Yi Gao ◽  
Tao Gu

With the increasing relevance of the Internet of Things and large-scale location-based services, LoRa localization has been attractive due to its low-cost, low-power, and long-range properties. However, existing localization approaches based on received signal strength indicators are either easily affected by signal fading of different land-cover types or labor intensive. In this work, we propose SateLoc, a LoRa localization system that utilizes satellite images to generate virtual fingerprints. Specifically, SateLoc first uses high-resolution satellite images to identify land-cover types. With the path loss parameters of each land-cover type, SateLoc can automatically generate a virtual fingerprinting map for each gateway. We then propose a novel multi-gateway combination strategy, which is weighted by the environmental interference of each gateway, to produce a joint likelihood distribution for localization and tracking. We implement SateLoc with commercial LoRa devices without any hardware modification, and evaluate its performance in a 227,500-m urban area. Experimental results show that SateLoc achieves a median localization error of 43.5 m, improving more than 50% compared to state-of-the-art model-based approaches. Moreover, SateLoc can achieve a median tracking error of 37.9 m with the distance constraint of adjacent estimated locations. More importantly, compared to fingerprinting-based approaches, SateLoc does not require the labor-intensive fingerprint acquisition process.


Sign in / Sign up

Export Citation Format

Share Document