SateLoc: A Virtual Fingerprinting Approach to Outdoor LoRa Localization Using Satellite Images

2021 ◽  
Vol 17 (4) ◽  
pp. 1-28
Author(s):  
Yuxiang Lin ◽  
Wei Dong ◽  
Yi Gao ◽  
Tao Gu

With the increasing relevance of the Internet of Things and large-scale location-based services, LoRa localization has been attractive due to its low-cost, low-power, and long-range properties. However, existing localization approaches based on received signal strength indicators are either easily affected by signal fading of different land-cover types or labor intensive. In this work, we propose SateLoc, a LoRa localization system that utilizes satellite images to generate virtual fingerprints. Specifically, SateLoc first uses high-resolution satellite images to identify land-cover types. With the path loss parameters of each land-cover type, SateLoc can automatically generate a virtual fingerprinting map for each gateway. We then propose a novel multi-gateway combination strategy, which is weighted by the environmental interference of each gateway, to produce a joint likelihood distribution for localization and tracking. We implement SateLoc with commercial LoRa devices without any hardware modification, and evaluate its performance in a 227,500-m urban area. Experimental results show that SateLoc achieves a median localization error of 43.5 m, improving more than 50% compared to state-of-the-art model-based approaches. Moreover, SateLoc can achieve a median tracking error of 37.9 m with the distance constraint of adjacent estimated locations. More importantly, compared to fingerprinting-based approaches, SateLoc does not require the labor-intensive fingerprint acquisition process.

2011 ◽  
Vol 21 (1) ◽  
pp. 19 ◽  
Author(s):  
Catherine Mering ◽  
Franck Chopin

A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.


The recent progress for spatial resolution of remote sensing imagery led to generate many types of Very HighResolution (VHR) satellite images, consequently, general speaking, it is possible to prepare accurate base map larger than 1:10,000 scale. One of these VHR satellite image is WorldView-3 sensor that launched in August 2014. The resolution of 0.31m makes WorldView-3 the highest resolution commercial satellite in the world. In the current research, a pan-sharpen image from that type, covering an area at Giza Governorate in Egypt, used to determine the suitable large-scale map that could be produced from that image. To reach this objective, two different sources for acquiring Ground Control Points (GCPs). Firstly, very accurate field measurements using GPS and secondly, Web Map Service (WMS) server (in the current research is Google Earth) which is considered a good alternative when GCPs are not available, are used. Accordingly, three scenarios are tested, using the same set of both 16 Ground Control Points (GCPs) as well as 14 Check Points (CHKs), used for evaluation the accuracy of geometric correction of that type of images. First approach using both GCPs and CHKs coordinates acquired by GPS. Second approach using GCPs coordinates acquired by Google Earth and CHKs acquired by GPS. Third approach using GCPs and CHKs coordinates by Google Earth. Results showed that, first approach gives Root Mean Square Error (RMSE) planimeteric discrepancy for GCPs of 0.45m and RMSE planimeteric discrepancy for CHKs of 0.69m. Second approach gives RMSE for GCPs of 1.10m and RMSE for CHKs of 1.75m. Third approach gives RMSE for GCPs of 1.10m and RMSE for CHKs of 1.40m. Taking map accuracy specification of 0.5mm of map scale, the worst values for CHKs points (1.75m&1,4m) resulted from using Google Earth as a source, gives the possibility of producing 1:5000 large-scale map compared with the best value of (0.69m) (map scale 1:2500). This means, for the given parameters of the current research, large scale maps could be produced using Google Earth, in case of GCPs are not available accurately from the field surveying, which is very useful for many users.


Geosciences ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 123 ◽  
Author(s):  
Donatella Dominici ◽  
Sara Zollini ◽  
Maria Alicandro ◽  
Francesca Della Torre ◽  
Paolo Buscema ◽  
...  

Knowledge of a territory is an essential element in any future planning action and in appropriate territorial and environmental requalification action planning. The current large-scale availability of satellite data, thanks to very high resolution images, provides professional users in the environmental, urban planning, engineering, and territorial government sectors, in general, with large amounts of useful data with which to monitor the territory and cultural heritage. Italy is experiencing environmental emergencies, and coastal erosion is one of the greatest threats, not only to the Italian heritage and economy, but also to human life. The aim of this paper is to find a rapid way of identifying the instantaneous shoreline. This possibility could help government institutions such as regions, civil protection, etc., to analyze large areas of land quickly. The focus is on instantaneous shoreline extraction in Ortona (CH, Italy), without considering tides, using WorldView-2 satellite images (50-cm resolution in panchromatic and 2 m in multispectral). In particular, the main purpose of this paper is to compare commercial software and ACM filters to test their effectiveness.


2019 ◽  
Vol 11 (16) ◽  
pp. 1902 ◽  
Author(s):  
Shouji Du ◽  
Shihong Du ◽  
Bo Liu ◽  
Xiuyuan Zhang

Urban functional-zone (UFZ) analysis has been widely used in many applications, including urban environment evaluation, and urban planning and management. How to extract UFZs’ spatial units which delineates UFZs’ boundaries is fundamental to urban applications, but it is still unresolved. In this study, an automatic, context-enabled multiscale image segmentation method is proposed for extracting spatial units of UFZs from very-high-resolution satellite images. First, a window independent context feature is calculated to measure context information in the form of geographic nearest-neighbor distance from a pixel to different image classes. Second, a scale-adaptive approach is proposed to determine appropriate scales for each UFZ in terms of its context information and generate the initial UFZs. Finally, the graph cuts algorithm is improved to optimize the initial UFZs. Two datasets including WorldView-2 image in Beijing and GaoFen-2 image in Nanchang are used to evaluate the proposed method. The results indicate that the proposed method can generate better results from very-high-resolution satellite images than widely used approaches like image tiles and road blocks in representing UFZs. In addition, the proposed method outperforms existing methods in both segmentation quality and running time. Therefore, the proposed method appears to be promising and practical for segmenting large-scale UFZs.


2020 ◽  
Vol 12 (22) ◽  
pp. 3836
Author(s):  
Carlos García Rodríguez ◽  
Jordi Vitrià ◽  
Oscar Mora

In recent years, different deep learning techniques were applied to segment aerial and satellite images. Nevertheless, state of the art techniques for land cover segmentation does not provide accurate results to be used in real applications. This is a problem faced by institutions and companies that want to replace time-consuming and exhausting human work with AI technology. In this work, we propose a method that combines deep learning with a human-in-the-loop strategy to achieve expert-level results at a low cost. We use a neural network to segment the images. In parallel, another network is used to measure uncertainty for predicted pixels. Finally, we combine these neural networks with a human-in-the-loop approach to produce correct predictions as if developed by human photointerpreters. Applying this methodology shows that we can increase the accuracy of land cover segmentation tasks while decreasing human intervention.


2020 ◽  
Vol 12 (11) ◽  
pp. 1743
Author(s):  
Artur M. Gafurov ◽  
Oleg P. Yermolayev

Transition from manual (visual) interpretation to fully automated gully detection is an important task for quantitative assessment of modern gully erosion, especially when it comes to large mapping areas. Existing approaches to semi-automated gully detection are based on either object-oriented selection based on multispectral images or gully selection based on a probabilistic model obtained using digital elevation models (DEMs). These approaches cannot be used for the assessment of gully erosion on the territory of the European part of Russia most affected by gully erosion due to the lack of national large-scale DEM and limited resolution of open source multispectral satellite images. An approach based on the use of convolutional neural networks for automated gully detection on the RGB-synthesis of ultra-high resolution satellite images publicly available for the test region of the east of the Russian Plain with intensive basin erosion has been proposed and developed. The Keras library and U-Net architecture of convolutional neural networks were used for training. Preliminary results of application of the trained gully erosion convolutional neural network (GECNN) allow asserting that the algorithm performs well in detecting active gullies, well differentiates gullies from other linear forms of slope erosion — rills and balkas, but so far has errors in detecting complex gully systems. Also, GECNN does not identify a gully in 10% of cases and in another 10% of cases it identifies not a gully. To solve these problems, it is necessary to additionally train the neural network on the enlarged training data set.


2020 ◽  
Vol 12 (8) ◽  
pp. 1288 ◽  
Author(s):  
José R. G. Braga ◽  
Vinícius Peripato ◽  
Ricardo Dalagnol ◽  
Matheus P. Ferreira ◽  
Yuliya Tarabalka ◽  
...  

Tropical forests concentrate the largest diversity of species on the planet and play a key role in maintaining environmental processes. Due to the importance of those forests, there is growing interest in mapping their components and getting information at an individual tree level to conduct reliable satellite-based forest inventory for biomass and species distribution qualification. Individual tree crown information could be manually gathered from high resolution satellite images; however, to achieve this task at large-scale, an algorithm to identify and delineate each tree crown individually, with high accuracy, is a prerequisite. In this study, we propose the application of a convolutional neural network—Mask R-CNN algorithm—to perform the tree crown detection and delineation. The algorithm uses very high-resolution satellite images from tropical forests. The results obtained are promising—the R e c a l l , P r e c i s i o n , and F 1 score values obtained were were 0.81 , 0.91 , and 0.86 , respectively. In the study site, the total of tree crowns delineated was 59,062 . These results suggest that this algorithm can be used to assist the planning and conduction of forest inventories. As the algorithm is based on a Deep Learning approach, it can be systematically trained and used for other regions.


Sign in / Sign up

Export Citation Format

Share Document