scholarly journals Wave decomposition applied to LA phasic longitudinal strain evaluated from MRI feature tracking to estimate a true LA booster strain index

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
J Lamy ◽  
G Soulat ◽  
M Evin ◽  
K Bouazizi-Verdier ◽  
A Giron ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background. Feature tracking (FT) is an emerging approach for the evaluation of both left atrium (LA) and left ventricular (LV) myocardial strain from the same cine MRI dataset. We hypothesized that the LA active contraction longitudinal strain, is a merge of an intrinsic LA booster contraction with the early diastolic LA emptying, especially when this latter is extended because of a poor LV relaxation (Figure 1, bottom). Such index can be estimated through LA phasic strain wave-decomposition as conventionally done for pressure curves to estimate forward and reflected components. Purpose. To compare the newly proposed LA intrinsic or "true" booster index (Sla_fit) against the conventional index (Sla) in terms of associations with LV remodeling (LV mass/ LV volume), LV systolic longitudinal strain (LV_GLS), and transmitral LV filling indices in healthy controls and aortic valve stenosis (AVS) patients with preserved LV ejection fraction. Methods. We studied 55 patients (34 AVS:71 ± 11years, 21 controls:66 ± 9years) who had an MRI exam with cine SSFP and phase contrast (PC) images. FT was applied to cine images to extract LV and LA phasic longitudinal strain and strain rates. Transmitral flow early (E, cm/s) and late (A, cm/s) filling peak velocities were calculated from PC data. To estimate intrinsic LA booster index, the LA longitudinal strain curve corresponding to the reservoir and conduit phases was fitted using two half cosine waves, to account for an eventual LA filling to LA early emptying asymmetry, while fitting the LA contraction with a full cosine wave (Figure 1). The peak of this latter wave was defined as the intrinsic LA booster strain index (Sla_fit), while the second peak of the measured LA strain was defined as the conventional LA booster strain (Sla). Results. While conventional Sla was significantly higher than intrinsic LA booster Sla_fit in AVS patients (13.55 ± 4.26 vs. 8.09 ± 6.07, p = 0.0002), it was nearly equivalent in controls (14.34 ± 4.30 vs.13.43 ± 4.23, p =.49). But the newly proposed LA booster strain index was significantly related to LV_GLS (r=-48,p=.0004); to LV remodeling (r=-.44,p = 0.0012) as well as to transmitral flow A wave ( r=-.49, p=.0005) none of these associations were significant when considering conventional LA booster strain. Interestingly our intrinsic LA booster index Sla_fit was significantly associated with LV longitudinal strain in both controls (r=-.55,p = 0.009) and asymptomatic AVS (N = 10) (r=-.77,p = 0.0081) but not in symptomatic AVS (N = 24) (p>.70). This may reveal a maintained LA-LV coupling in the asymptomatic phase and an uncoupling in the symptomatic phase, caused by elevated LV filling pressures. Conclusions. A promising index for the quantitative evaluation of intrinsic LA booster function was proposed and its consistency was demonstrated through its significant associations with LV remodeling, LV longitudinal strain and transmitral late filling peak. Abstract Figure.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hong Liu ◽  
Dan Yang ◽  
Ke Wan ◽  
Yong Luo ◽  
Jia-Yu Sun ◽  
...  

AbstractThe cine magnetic resonance imaging based technique feature tracking-cardiac magnetic resonance (FT-CMR) is emerging as a novel, simple and robust method to evaluate myocardial strain. We investigated the distribution characteristics of left-ventricular myocardial strain using a novel cine MRI based deformation registration algorithm (DRA) in a cohort of healthy Chinese subjects. A total of 130 healthy Chinese subjects were enrolled. Three components of orthogonal strain (radial, circumferential, longitudinal) of the left ventricle were analyzed using DRA on steady-state free precession cine sequence images. A distinct transmural circumferential strain gradient was observed in the left ventricle that showed universal increment from the epicardial to endocardial myocardial wall (epiwall: −15.4 ± 1.9%; midwall: −18.8 ± 2.0%; endowall: −22.3 ± 2.3%, P < 0.001). Longitudinal strain showed a similar trend from epicardial to endocardial layers (epiwall: −16.0 ± 2.9%; midwall: −15.6 ± 2.7%; endowall: −14.8 ± 2.4%, P < 0.001), but radial strain had a very heterogeneous distribution and variation. In the longitudinal direction from the base to the apex of the left ventricle, there was a trend of decreasing peak systolic longitudinal strain (basal: −23.3 ± 4.6%; mid: −13.7 ± 7.3%; apical: −13.2 ± 5.5%; P < 0.001). In conclusion, there are distinct distribution patterns of circumferential and longitudinal strain within the left ventricle in healthy Chinese subjects. These distribution patterns of strain may provide unique profiles for further study in different types of myocardial disease.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Reinstadler ◽  
M Reindl ◽  
C Tiller ◽  
M Holzknecht ◽  
A Mayr ◽  
...  

Abstract Objectives To evaluate the independent and incremental value of left ventricular (LV) strain assessed by cardiac magnetic resonance feature tracking (CMR-FT) for prediction of adverse LV remodeling following ST-elevation myocardial infarction (STEMI). Background The role of LV myocardial strain by CMR-FT for prediction of adverse remodeling after STEMI in comparison to LV ejection fraction and infarct severity is unclear. Methods STEMI patients treated with primary percutaneous coronary intervention within 24 hours after symptom onset were enrolled. CMR core laboratory analysis was performed to assess LV ejection fraction, infarct pathology and LV myocardial strain. The primary endpoint was adverse remodeling defined as ≥20% increase in LV end-diastolic volume from baseline to 4 months. Results From the 232 patients included, 38 (16.4%) reached the primary endpoint. Global longitudinal strain (GLS), global radial strain, and global circumferential strain were all predictive of adverse remodeling (p<0.01 for all), but among strain values only GLS was an independent predictor of adverse remodeling (hazard ratio: 1.36 [1.03–1.78]; p=0.028) after adjustment for strain parameters, ejection fraction and CMR markers of infarct severity. A GLS >-14% was associated with a 4-fold increase in risk for LV remodeling (hazard ratio: 4.16 [1.56–11.13]; p=0.005). Addition of GLS to a baseline model comprising ejection fraction, infarct size and microvascular obstruction resulted in net reclassification improvement of 0.26 ([0.13–0.38]; p<0.001) and integrated discrimination improvement of 0.02 ([0.01–0.03]; p=0.006). Conclusions In STEMI survivors, determination of GLS using CMR-FT provides important prognostic information for the development of adverse remodeling that is incremental to LV ejection fraction and CMR markers of infarct severity.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Saikrishna Ananthapadmanabhan ◽  
Giau Vo ◽  
Tuan Nguyen ◽  
Hany Dimitri ◽  
James Otton

Abstract Background Cardiac magnetic resonance feature tracking (CMR-FT) and speckle tracking echocardiography (STE) are well-established strain imaging modalities. Multilayer strain measurement permits independent assessment of endocardial and epicardial strain. This novel and layer specific approach to evaluating myocardial deformation parameters may provide greater insight into cardiac contractility when compared to whole-layer strain analysis. The aim of this study is to validate CMR-FT as a tool for multilayer strain analysis by providing a direct comparison between multilayer global longitudinal strain (GLS) values between CMR-FT and STE. Methods We studied 100 patients who had an acute myocardial infarction (AMI), who underwent CMR imaging and echocardiogram at baseline and follow-up (48 ± 13 days). Dedicated tissue tracking software was used to analyse single- and multi-layer GLS values for CMR-FT and STE. Results Correlation coefficients for CMR-FT and STE were 0.685, 0.687, and 0.660 for endocardial, epicardial, and whole-layer GLS respectively (all p < 0.001). Bland Altman analysis showed good inter-modality agreement with minimal bias. The absolute limits of agreement in our study were 6.4, 5.9, and 5.5 for endocardial, whole-layer, and epicardial GLS respectively. Absolute biases were 1.79, 0.80, and 0.98 respectively. Intraclass correlation coefficient (ICC) values showed moderate agreement with values of 0.626, 0.632, and 0.671 respectively (all p < 0.001). Conclusion There is good inter-modality agreement between CMR-FT and STE for whole-layer, endocardial, and epicardial GLS, and although values should not be used interchangeably our study demonstrates that CMR-FT is a viable imaging modality for multilayer strain


Author(s):  
Maurício Fregonesi Barbosa ◽  
Mariana Moraes Contti ◽  
Luis Gustavo Modelli de Andrade ◽  
Alejandra del Carmen Villanueva Mauricio ◽  
Sergio Marrone Ribeiro ◽  
...  

AbstractTo determine whether left ventricular (LV) global longitudinal strain (GLS) measured by feature-tracking (FT) cardiac magnetic resonance (CMR) improves after kidney transplantation (KT) and to analyze associations between LV GLS, reverse remodeling and myocardial tissue characteristics. This is a prospective single-center cohort study of kidney transplant recipients who underwent two CMR examinations in a 3T scanner, including cines, tagging, T1 and T2 mapping. The baseline exam was done up to 10 days after transplantation and the follow-up after 6 months. Age and sex-matched healthy controls were also studied for comparison. A total of 44 patients [mean age 50 ± 11 years-old, 27 (61.4%) male] completed the two CMR exams. LV GLS improved from − 13.4% ± 3.0 at baseline to − 15.2% ± 2.7 at follow-up (p < 0.001), but remained impaired when compared with controls (− 17.7% ± 1.5, p = 0.007). We observed significant correlation between improvement in LV GLS with reductions of left ventricular mass index (r = 0.356, p = 0.018). Improvement in LV GLS paralleled improvements in LV stroke volume index (r = − 0.429, p = 0.004), ejection fraction (r = − 0.408, p = 0.006), global circumferential strain (r = 0.420, p = 0.004) and global radial strain (r = − 0.530, p = 0.002). There were no significant correlations between LV GLS, native T1 or T2 measurements (p > 0.05). In this study, we demonstrated that LV GLS measured by FT-CMR improves 6 months after KT in association with reverse remodeling, but not native T1 or T2 measurements.


2021 ◽  
Vol 100 (5) ◽  
pp. 46-52
Author(s):  
N.Yu. Chernykh ◽  
◽  
А.А. Tarasova ◽  
O.S. Groznova ◽  
I.M. Shigabeev ◽  
...  

Assessment of segmental myocardial strain is a promising and relevant direction in the diagnosis of early impairments of left ventricular (LV) contractility in children with hypertrophic cardiomyopathy (HCM). Objective of the study: to assess the indicators of segmental myocardial strain in children with HCM. Materials and methods of research: prospective, open-label, nonrandomized, controlled. 61 patients with asymmetric HCM aged 7 to 17 years (median 9 [7,6; 13,2]) underwent echocardiography according to the standard technique with the determination of segmental longitudinal, radial, circular LV myocardium in 2D speckle tracking mode. 45 (74%) children had a non-obstructive form (NF) of HCM, 16 (26%) children had an obstructive form (OF). Obstruction was detected at the level of the LV outflow tract with a pressure gradient of 30-50 mm Hg. Results: when assessing segmental myocardial strain, a decrease in longitudinal strain was found less than the normative values in the antero-septal, anterior, antero-lateral segments in children with NF HCM with a compensatory increase in strain values in the contralateral segments (inferior septal, inferior lateral and lower ). In similar segments in children with OF, there was a significant decrease in deformity, while in the contralateral segments a less pronounced compensatory increase in deformity was determined, as well as a decrease in the minimum values of strain indicators. Assessment of segmental radial and circular strain, a statistically significant predominance of indicators in all segments, except for anterolateral, in the group with NF compared to the OF HCM was determined. A decrease in strain in the antero-septal, anterior, antero-lateral segments was found, but less pronounced compared to the indicators of longitudinal strain, as well as a compensatory increase in strain in the antero-septal values in the contralateral segments (inferior septal, inferior lateral and inferior). It has been found that the assessment of global strain values widely used in clinical practice might not be optimal enough, since too many segmental strain values are discarded and averaged, which are unevenly distributed, and therefore the assessment of strain in each segment of the myocardium in children with an asymmetric form of HCM acquires important diagnostic value. Conclusion: changes in the indicators of segmental myocardial strain reflect violations of LV contractile function and are most pronounced in OF compared with NF HCM. Their study in children is important for the timely initiation of therapy and improving the prognosis of the disease.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Kaspar Broch ◽  
Stefano deMarchi ◽  
Richard Massey ◽  
Svend Aakhus ◽  
Lars Gullestad ◽  
...  

Introduction: Elite endurance athletes often develop left ventricular dilatation comparable to that observed in aortic regurgitation (AR). Hypothesis: We hypothesized that the LV remodeling observed in athlete’s heart differs from that seen in AR, and that the difference may be attributed to different fiber stress distribution. Methods: Thirty asymptomatic patients with moderate to severe AR, 15 age matched elite endurance athletes (Athl) and 17 age matched healthy controls (C) where analyzed with 3D speckle tracking echocardiography. We calculated the ratio between peak systolic circumferential (CS) - and peak systolic longitudinal strain (LS) and end-systolic (ES) circumferential (ESSc) and meridional (ESSm) fiber stress. Results: LV ejection fraction in C, Athl and AR patients was (61 ± 2, 61 ± 3 and 62 ± 3%, respectively, p=NS). LV end-diastolic volume was 78 ± 11, 112 ± 13 and 117 ± 20 ml/m 2 in C, Athl and AR, respectively, (C vs AR and Athl, p<0.01, AR vs Athl, p=NS). A non-uniform contraction pattern with a rightward shift of the LS strain curve was observed in AR (Figure 1). The CS/LS ratio was 0.91 ± 0.11, 0.91 ± 0.16 and 1.12 ± 0.24 in C, Athl and AR, respectively, (AR vs C and Athl, p<0.01, C vs Athl, p=NS). Consistently, the ESSc/ESSm ratio was similar in C and Athl (1.75 ± 0.08 and 1.74 ± 0.07, respectively, p=NS) and lower in AR patients (1.67 ± 0.07, AR vs C and Athl, p<0.01), indicating a relative increase in meridional fiber stress in the AR group (Figure 2). Conclusions: We have demonstrated that LV remodeling in AR patients differs from athlete’s heart with similar LV volumes, and may be attributed to a shift in the circumferential-meridional fiber stress ratio in AR patients.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Sun ◽  
Xuehua Shen ◽  
Jing Wang ◽  
Shuangshuang Zhu ◽  
Yanting Zhang ◽  
...  

Objective: This study aimed to: (1) evaluate the association between myocardial fibrosis (MF) quantified by extracellular volume fraction (ECV) and myocardial strain measured by two-dimensional (2D)- and three-dimensional speckle-tracking echocardiography (3D-STE) and (2) further investigate which strain parameter measured by 2D- and 3D-STE is the more robust predictor of MF in heart transplant (HT) recipients.Methods: A total of 40 patients with HT and 20 healthy controls were prospectively enrolled. Left ventricular (LV)-global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) were measured by 2D- and 3D-STE. LV diffuse MF was defined by cardiovascular magnetic resonance (CMR)-ECV.Results: The HT recipients had a significantly higher native T1 and ECV than healthy controls (1043.8 ± 34.0 vs. 999.7 ± 19.7 ms, p &lt; 0.001; 26.6 ± 2.7 vs. 24.3 ± 1.8%, p = 0.02). The 3D- and 2D-STE-LVGLS and LVGCS were lower (p &lt; 0.005) in the HT recipients than in healthy controls. ECV showed a moderate correlation with 2D-LVGLS (r = 0.53, p = 0.002) and 3D-LVGLS (r = 0.60, p &lt; 0.001), but it was not correlated with 2D or 3D-LVGCS, or LVGRS. Furthermore, 3D-LVGLS and 2D-LVGLS had a similar correlation with CMR-ECV (r = 0.60 vs. 0.53, p = 0.670). A separate stepwise multivariate linear analysis showed that both the 2D-LVGLS (β = 0.39, p = 0.019) and 3D-LVGLS (β = 0.54, p &lt; 0.001) were independently associated with CMR-ECV.Conclusion: CMR marker of diffuse MF was present in asymptomatic patients with HT and appeared to be associated with decreased myocardial strain by echocardiography. Both the 2D- and 3D-LVGLS were independently correlated with diffuse LVMF, which may provide an alternative non-invasive tool for monitoring the development of adverse fibrotic remodeling during the follow-up of HT recipients.


2020 ◽  
Vol 9 (12) ◽  
pp. 3882
Author(s):  
Thomas Stiermaier ◽  
Kira Busch ◽  
Torben Lange ◽  
Toni Pätz ◽  
Moritz Meusel ◽  
...  

Cardiac magnetic resonance (CMR)-derived left ventricular (LV) global longitudinal strain (GLS) provides incremental prognostic information on various cardiovascular diseases but has not yet been investigated comprehensively in patients with Takotsubo syndrome (TS). This study evaluated the prognostic value of feature tracking (FT) GLS, tissue tracking (TT) GLS, and fast manual long axis strain (LAS) in 147 patients with TS, who underwent CMR at a median of 2 days after admission. Long-term mortality was assessed 3 years after the acute event. In contrast to LV ejection fraction and tissue characteristics, impaired FT-GLS, TT-GLS and fast manual LAS were associated with adverse outcome. The best cutoff points for the prediction of long-term mortality were similar with all three approaches: FT-GLS −11.28%, TT-GLS −11.45%, and fast manual LAS −10.86%. Long-term mortality rates were significantly higher in patients with FT-GLS > −11.28% (25.0% versus 9.8%; p = 0.029), TT-GLS > −11.45% (20.0% versus 5.4%; p = 0.016), and LAS > −10.86% (23.3% versus 6.6%; p = 0.014). However, in multivariable analysis, diabetes mellitus (p = 0.001), atrial fibrillation (p = 0.001), malignancy (p = 0.006), and physical triggers (p = 0.006) outperformed measures of myocardial strain and emerged as the strongest, independent predictors of long-term mortality in TS. In conclusion, CMR-based longitudinal strain provides valuable prognostic information in patients with TS, regardless of the utilized technique of assessment. Long-term mortality, however, is mainly determined by comorbidities.


Sign in / Sign up

Export Citation Format

Share Document