scholarly journals Impacts of nitrogen addition on switchgrass root-associated diazotrophic community structure and function

2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Darian N Smercina ◽  
Sarah E Evans ◽  
Maren L Friesen ◽  
Lisa K Tiemann

ABSTRACT Cellulosic bioenergy crops, like switchgrass (Panicum virgatum), have potential for growth on lands unsuitable for food production coupled with potential for climate mitigation. Sustainability of these systems lies in identifying conditions that promote high biomass yields on marginal lands under low-input agricultural practices. Associative nitrogen fixation (ANF) is a potentially important nitrogen (N) source for these crops, yet ANF contributions to plant N, especially under fertilizer N addition are unclear. In this study, we assess structure (nifH) and function (ANF) of switchgrass root-associated diazotrophic communities to long-term and short-term N additions using soil from three marginal land sites. ANF rates were variable and often unexpectedly high, sometimes 10× greater than reported in the literature, and did not respond in repeatable ways to long-term or short-term N. We found few impacts of N addition on root-associated diazotrophic community structure or membership. Instead, we found a very consistent root-associated diazotrophic community even though switchgrass seeds were germinated in soil from field sites with distinct diazotrophic communities. Ultimately, this work demonstrates that root-associated diazotrophic communities have the potential to contribute to switchgrass N demands, independent of N addition, and this may be driven by selection of the diazotrophic community by switchgrass roots.

2015 ◽  
Vol 8s2 ◽  
pp. MBI.S31345 ◽  
Author(s):  
Patrick J. McNamara ◽  
Timothy M. LaPara ◽  
Paige J. Novak

A plethora of organic micropollutant mixtures are found in untreated municipal wastewater. Anaerobic digesters receive large loadings of hydrophobic micropollutants that sorb to wastewater biosolids. Despite micropollutants being pervasive as mixtures, little research is available to explain the impact that mixtures of compounds, as well as exposure time, have on microbial communities in anaerobic digesters. Perfluorooctane sulfonate (PFOS) was added to anaerobic enrichment cultures in both short-term (14 days) and long-term (140 days) studies to determine the impact of exposure time. Additionally, triclosan was added during the experiments to investigate the impact of mixtures on community structure and function. PFOS did not alter methane production in short-term studies, but in long-term studies, methane production increased, consistent with our hypothesis that PFOS may act as a metabolic uncoupler. The impact of triclosan on methane production was exacerbated when PFOS was already present in the anaerobic enrichment cultures. Triclosan also had greater impacts on microbial community structures in the bottles that had been exposed to PFOS long-term. These results demonstrate that both chemical mixtures and exposure time are important parameters to address when trying to define the impacts of micropollutants on anaerobic microbial communities.


2021 ◽  
Vol 7 (10) ◽  
pp. 791
Author(s):  
Nan Yang ◽  
Bo Wang ◽  
Dong Liu ◽  
Xuan Wang ◽  
Xiuxiu Li ◽  
...  

The continuous upsurge in soil nitrogen (N) enrichment has had strong impacts on the structure and function of ecosystems. Elucidating how plant ectomycorrhizal fungi (EMF) mutualists respond to this additional N will facilitate the rapid development and implementation of more broadly applicable management and remediation strategies. For this study, we investigated the responses of EMF communities to increased N, and how other abiotic environmental factors impacted them. Consequently, we conducted an eight-year N addition experiment in a poplar plantation in coastal eastern China that included five N addition levels: 0 (N0), 50 (N1), 100 (N2), 150 (N3), and 300 (N4) kg N ha−1 yr−1. We observed that excessive N inputs reduced the colonization rate and species richness of EMF, and altered its community structure and functional traits. The total carbon content of the humus layer and available phosphorus in the mineral soil were important drivers of EMF abundance, while the content of ammonium in the humus layer and mineral soil determined the variations in the EMF community structure and mycelium foraging type. Our findings indicated that long-term N addition induced soil nutrient imbalances that resulted in a severe decline in EMF abundance and loss of functional diversity in poplar plantations.


Author(s):  
Zhen’an Yang ◽  
Wei Zhan ◽  
Lin Jiang ◽  
Huai Chen

As one of the nitrogen (N) limitation ecosystems, alpine meadows have significant effects on their structure and function. However, research on the response and linkage of vegetation-soil to short-term low-level N deposition with rhizosphere processes is scant. We conducted a four level N addition (0, 20, 40, and 80 kg N ha−1 y−1) field experiment in an alpine meadow on the Qinghai-Tibetan Plateau (QTP) from July 2014 to August 2016. We analyzed the community characteristics, vegetation (shoots and roots), total carbon (TC), nutrients, soil (rhizosphere and bulk) properties, and the linkage between vegetation and soil under different N addition rates. Our results showed that (i) N addition significantly increased and decreased the concentration of soil nitrate nitrogen (NO3−-N) and ammonium nitrogen, and the soil pH, respectively; (ii) there were significant correlations between soil (rhizosphere and bulk) NO3−-N and total nitrogen (TN), and root TN, and there was no strong correlation between plant and soil TC, TN and total phosphorus, and their stoichiometry under different N addition rates. The results suggest that short-term low-N addition affected the plant community, vegetation, and soil TC, TN, TP, and their stoichiometry insignificantly, and that the correlation between plant and soil TC, TN, and TP, and their stoichiometry were insignificant.


2007 ◽  
Vol 16 (8) ◽  
pp. 787-798 ◽  
Author(s):  
Hossein Arefanian ◽  
Eric B. Tredget ◽  
Ray V. Rajotte ◽  
Gregory S. Korbutt ◽  
Ron G. Gill ◽  
...  

Type 1 diabetes mellitus (T1DM) is caused by the autoimmune destruction of pancreatic islet β-cells, which are required for the production of insulin. Islet transplantation has been shown to be an effective treatment option for T1DM; however, the current shortage of human islet donors limits the application of this treatment to patients with brittle T1DM. Xenotransplantation of pig islets is a potential solution to the shortage of human donor islets provided xenograft rejection is prevented. We demonstrated that a short-term administration of a combination of anti-LFA-1 and anti-CD154 monoclonal antibodies (mAbs) was highly effective in preventing rejection of neonatal porcine islet (NPI) xenografts in non-autoimmune-prone B6 mice. However, the efficacy of this therapy in preventing rejection of NPI xenografts in autoimmune-prone nonobese diabetic (NOD) mice is not known. Given that the current application of islet transplantation is for the treatment of T1DM, we set out to determine whether a combination of anti-LFA-1 and anti-CD154 mAbs could promote long-term survival of NPI xenografts in NOD mice. Short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs, which we found highly effective in preventing rejection of NPI xenografts in B6 mice, failed to promote long-term survival of NPI xenografts in NOD mice. However, addition of anti-CD4 mAb to short-term treatment of a combination of anti-LFA-1 and anti-CD154 mAbs resulted in xenograft function in 9/12 animals and long-term graft (>100 days) survival in 2/12 mice. Immunohistochemical analysis of islet grafts from these mice identified numerous insulin-producing β-cells. Moreover, the anti-porcine antibody as well as autoreactive antibody responses in these mice was reduced similar to those observed in naive nontransplanted mice. These data demonstrate that simultaneous targeting of LFA-1, CD154, and CD4 molecules can be effective in inducing long-term islet xenograft survival and function in autoimmune-prone NOD mice.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3563-3563 ◽  
Author(s):  
Brahmananda Reddy Chitteti ◽  
Bradley Poteat ◽  
Sonia Rodriguez- Rodriquez ◽  
Nadia Carlesso ◽  
Melissa A. Kacena ◽  
...  

Abstract Hematopoietic Stem Cell (HSC) self-renewal and multilineage differentiation potential is governed by multiple intrinsic and extrinsic parameters. Collectively, these parameters dictate the fate of HSC and underscore the heterogeneity observed within phenotypically defined groups of stem cells. While cell cycle status and the genetic profile of HSCs are critical intrinsic modulators of cell fate, interactions with cytokines, growth factors, and cellular elements of the hematopoietic niche (HN) are key extrinsic regulators of stem cell function. We examined the impact of cellular elements of the HN on stem cell fate and maintenance by analyzing the combined effect of calvaria-derived osteoblasts (OB) and mesenchymal stromal cells (MSC) on cultured murine HSC. Murine bone marrow-derived KSL cells were co-cultured with OB alone, MSC alone, or with mixtures of OB and MSC at different ratios for one week. Cultures were supplemented with SCF, Fl-3, Tpo, IL-3, IL-6, IGF1 & OPN. OB alone, maintained the functional properties of cultured HSCs significantly better than MSC thus corroborating the importance of OB in the overall competence of the HN. On day 7, the fold-increase in the number of LSK cells was 1473 ± 291 in OB cultures, 561 ± 159 in MSC cultures, and 603 ± 263 in OB+MSC cultures (n= 4 for all 3 groups). During the same 7 day-period, the number of CFU in progeny cells expanded 74 ± 15 fold in OB cultures, 23 ± 2 fold in MSC cultures, and 27 ± 15 in OB+MSC cultures (n=3 for all groups). The substantial increase in KSL progeny in OB cultures on day 7 was accompanied by a high percentage of cells in active phases of cell cycle (% G0/G1 = 72.5 ± 7.0, n=3) compared to their counterparts in MSC or OB+MSC cultures. In addition, co-culture of KSL cells with OB resulted in an unexpected higher maintenance of the Sca-1+Lin- phenotype (26.5% ± 2.8%) relative to MSC cultures (4.6% ± 1.0%) and OB+MSC cultures (11.7% ± 1.8%; n=3 for all). Only some of these results were reproduced when KSL cells were cultured in OB-conditioned medium suggesting that cell-to-cell contact may be essential for the observed activities. To assess the in vivo potential of LSK cells maintained in these cultures, the 10-day expansion equivalent of 1,000 LSK cells were competitively transplanted in lethally irradiated congenic mice and chimerism was monitored for the next 4 months. At 1 and 2 months post-transplantation, the level of chimerism sustained by LSK cells maintained in OB cultures for 10 days surpassed or was slightly lower than that observed with freshly isolated LSK cells (72.7% vs 59.7% and 57.4% vs 74.7%, respectively) suggesting that OB culture conditions effectively expanded short-term repopulating cells. At 4 months post-transplantation, mice receiving freshly isolated LSK cells were 83.6% ± 1.8% chimeric compared to 53.7% ± 16.1% for mice transplanted with cells from OB cultures and 31.9% ± 21.4% for mice receiving cells from OB+MSC cultures. Overall, these data suggest that OB-LSK interactions promote the maintenance of both short-term and long-term repopulating cells while MSC suppress the OB-mediated activity. To investigate the mechanism of OB-mediated maintenance of stem cell phenotype and function, we examined Notch signaling using Real-Time Q-PCR on cells maintained in culture for 7 days. Relative to the expression in KSL cells, expression of Notch 2 was elevated in OB cultures and suppressed over 2-fold in cultures of MSC and OB+MSC. Similarly, the expression of Jagged 1 and 2, Delta 1 and 4, Hes 1 and 5, Deltex, and SKP2 was increased in OB cultures and suppressed in MSC and OB+MSC cultures. Collectively, these data illustrate that cell-to-cell contact between OB and KSL cells promotes the in vitro maintenance of long-term and short-term repopulating cells and suggest that this stem cell function-promoting activity is induced in part by the upregulation of Notch-mediated signaling between HSCs and osteoblasts. The suppressive effect imparted by MSC on stem cell maintenance compared to cultures of OB alone suggest that these two cellular elements of the HN have opposite effects on the fate and function of stem cells.


2003 ◽  
Vol 46 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Dave Seghers ◽  
Kristof Verthé ◽  
Dirk Reheul ◽  
Robert Bulcke ◽  
Steven D Siciliano ◽  
...  

1990 ◽  
Vol 262 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Giuseppina Mazzocchi ◽  
Letizia Cavallini ◽  
Aldona Kasprzak ◽  
Piera Rebuffat ◽  
Gastone G. Nussdorfer

Lung ◽  
1998 ◽  
Vol 176 (4) ◽  
pp. 267-280 ◽  
Author(s):  
D. J. Prezant ◽  
M. L. Karwa ◽  
B. Richner ◽  
D. Maggiore ◽  
E. I. Gentry ◽  
...  

2018 ◽  
Vol 5 (6) ◽  
pp. 1397-1407 ◽  
Author(s):  
Carmen Gil-Allué ◽  
Ahmed Tlili ◽  
Kristin Schirmer ◽  
Mark O. Gessner ◽  
Renata Behra

Silver nanoparticles (AgNPs) are widely used as antimicrobial agents.


Sign in / Sign up

Export Citation Format

Share Document