scholarly journals Long-Term Nitrogen Deposition Alters Ectomycorrhizal Community Composition and Function in a Poplar Plantation

2021 ◽  
Vol 7 (10) ◽  
pp. 791
Author(s):  
Nan Yang ◽  
Bo Wang ◽  
Dong Liu ◽  
Xuan Wang ◽  
Xiuxiu Li ◽  
...  

The continuous upsurge in soil nitrogen (N) enrichment has had strong impacts on the structure and function of ecosystems. Elucidating how plant ectomycorrhizal fungi (EMF) mutualists respond to this additional N will facilitate the rapid development and implementation of more broadly applicable management and remediation strategies. For this study, we investigated the responses of EMF communities to increased N, and how other abiotic environmental factors impacted them. Consequently, we conducted an eight-year N addition experiment in a poplar plantation in coastal eastern China that included five N addition levels: 0 (N0), 50 (N1), 100 (N2), 150 (N3), and 300 (N4) kg N ha−1 yr−1. We observed that excessive N inputs reduced the colonization rate and species richness of EMF, and altered its community structure and functional traits. The total carbon content of the humus layer and available phosphorus in the mineral soil were important drivers of EMF abundance, while the content of ammonium in the humus layer and mineral soil determined the variations in the EMF community structure and mycelium foraging type. Our findings indicated that long-term N addition induced soil nutrient imbalances that resulted in a severe decline in EMF abundance and loss of functional diversity in poplar plantations.

2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Darian N Smercina ◽  
Sarah E Evans ◽  
Maren L Friesen ◽  
Lisa K Tiemann

ABSTRACT Cellulosic bioenergy crops, like switchgrass (Panicum virgatum), have potential for growth on lands unsuitable for food production coupled with potential for climate mitigation. Sustainability of these systems lies in identifying conditions that promote high biomass yields on marginal lands under low-input agricultural practices. Associative nitrogen fixation (ANF) is a potentially important nitrogen (N) source for these crops, yet ANF contributions to plant N, especially under fertilizer N addition are unclear. In this study, we assess structure (nifH) and function (ANF) of switchgrass root-associated diazotrophic communities to long-term and short-term N additions using soil from three marginal land sites. ANF rates were variable and often unexpectedly high, sometimes 10× greater than reported in the literature, and did not respond in repeatable ways to long-term or short-term N. We found few impacts of N addition on root-associated diazotrophic community structure or membership. Instead, we found a very consistent root-associated diazotrophic community even though switchgrass seeds were germinated in soil from field sites with distinct diazotrophic communities. Ultimately, this work demonstrates that root-associated diazotrophic communities have the potential to contribute to switchgrass N demands, independent of N addition, and this may be driven by selection of the diazotrophic community by switchgrass roots.


2020 ◽  
Vol 55 (3) ◽  
pp. 151-162
Author(s):  
Danuta Urban ◽  
Joanna Sender ◽  
Ewelina Tokarz ◽  
Andrzej Różycki

AbstractIn view of the sensitivity of Liparis loeselii to changes in habitat conditions, we carried out a study with the aim to monitor population numbers, identify the individual features of the Liparis loeselii population, analyse habitat conditions, identify threats and propose conservation measures to preserve the species. The investigations were conducted in seven unmanaged objects located in three Natura 2000 areas in eastern Poland. The results of this study provide a new insight into Liparis loeselii ecology. The analysed populations inhabited some habitat types: extremely poor fen, transitional mire, rich fen, calcareous fen, spring-fed fen. The content of nutrients was similar in all the habitats. A CCA analysis revealed that the total carbon content, pH, and redox potential of the substrate determine differences between the habitats analysed. Juvenile individuals represented a maximum of 12% of the analysed populations and were the least abundant group of these plants. The flowering was primarily influenced by hydrological conditions. Based on the long-term observations reported in this article, it can be assumed that the species stands a chance of surviving at the localities analysed, provided that the habitat conditions do not change dramatically.


2016 ◽  
Vol 62 (6) ◽  
pp. 485-491 ◽  
Author(s):  
Samiran Banerjee ◽  
Nabla Kennedy ◽  
Alan E. Richardson ◽  
Keith N. Egger ◽  
Steven D. Siciliano

Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2–5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.


Author(s):  
Zhen’an Yang ◽  
Wei Zhan ◽  
Lin Jiang ◽  
Huai Chen

As one of the nitrogen (N) limitation ecosystems, alpine meadows have significant effects on their structure and function. However, research on the response and linkage of vegetation-soil to short-term low-level N deposition with rhizosphere processes is scant. We conducted a four level N addition (0, 20, 40, and 80 kg N ha−1 y−1) field experiment in an alpine meadow on the Qinghai-Tibetan Plateau (QTP) from July 2014 to August 2016. We analyzed the community characteristics, vegetation (shoots and roots), total carbon (TC), nutrients, soil (rhizosphere and bulk) properties, and the linkage between vegetation and soil under different N addition rates. Our results showed that (i) N addition significantly increased and decreased the concentration of soil nitrate nitrogen (NO3−-N) and ammonium nitrogen, and the soil pH, respectively; (ii) there were significant correlations between soil (rhizosphere and bulk) NO3−-N and total nitrogen (TN), and root TN, and there was no strong correlation between plant and soil TC, TN and total phosphorus, and their stoichiometry under different N addition rates. The results suggest that short-term low-N addition affected the plant community, vegetation, and soil TC, TN, TP, and their stoichiometry insignificantly, and that the correlation between plant and soil TC, TN, and TP, and their stoichiometry were insignificant.


2003 ◽  
Vol 46 (2) ◽  
pp. 139-146 ◽  
Author(s):  
Dave Seghers ◽  
Kristof Verthé ◽  
Dirk Reheul ◽  
Robert Bulcke ◽  
Steven D Siciliano ◽  
...  

2018 ◽  
Vol 5 (6) ◽  
pp. 1397-1407 ◽  
Author(s):  
Carmen Gil-Allué ◽  
Ahmed Tlili ◽  
Kristin Schirmer ◽  
Mark O. Gessner ◽  
Renata Behra

Silver nanoparticles (AgNPs) are widely used as antimicrobial agents.


2020 ◽  
Vol 9 (2) ◽  
pp. 99-108
Author(s):  
Raka Pramulo Sophianto ◽  
Hadi Endrawati ◽  
Retno Hartati

Padang lamun merupakan ekosistem yang kompleks dan produktif di ekosistem laut dan pesisir serta salah satu peran utama lamun adalah sebagai penyimpan karbon dengan karakteristik uniknya. Penelitian ini bertujuan untuk mengetahui jenis-jenis lamun, mengetahui struktur komunitas lamun,  nilai biomassa dan nilai karbon lamun. Penelitian ini dilakukan pada bulan Oktober dan November 2017 di Teluk Awur dan Pantai Bendengan Jepara. Metode yang digunakan dalam penelitian ini adalah metode deskriptif. Pengambilan sampel dilakukan pada dua tempat masing-masing lima stasiun. Sampel yang diambil adalah lamun, sedimen dan air laut yang ditemukan di lokasi penelitian yang kemudian di identifikasi serta dianalisis di Laboratorium Biologi, Departemen Ilmu Kelautan, dan analisis pengabuan lamun dilakukan pada di Laboratorium Geologi, Departemen Ilmu Kelautan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro. Hasil penelitian ini menunjukkan nilai total biomassa lamun yang didapat di kedua lokasi dari sampling pertama yaitu 982,77 gbk/m2 dan sampling kedua yaitu 923,91 gbk/m2. Total kandungan karbon pada sampling pertama berkisar antara 511,76 – 3662,26 gC/m2 dan total karbon pada sampling kedua berkisar antara 141,48 – 3344,2 gC/m2. Perbedaan hasil yang di dapat menunjukkan bahwa perbedaan iklim dapat berpengaruh terhadap hasil yang didapatkan. Seagrass beds are complex and productive ecosystems in marine and coastal ecosystems and one of the main roles of seagrasses is storing carbon with its unique characteristics. This study aims to determine the types of seagrasses, find out the seagrass community structure, biomass values and seagrass carbon values. This research was conducted in October and November 2017 in Teluk Awur and Bendengan Jepara Beach. The method used in this research is descriptive method. Sampling was carried out at two places each of five stations. Samples taken were seagrass, sediments and seawater found at the study site which were then identified and analyzed in the Biology Laboratory, Department of Marine Sciences, and analysis of desertion carried out at the Geology Laboratory, Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University. The results of this study indicate the total value of seagrass biomass obtained in both locations from the first test was 982.77 gbk/m2 and the second test was 923.91 gbk/m2. The total carbon content in the first sampling ranged from 511.76 - 3662.26 gC/m2 and the total carbon in the second sampling ranged from 141.48-3344.2 gC/m2. The difference in results can show that climate differences can affect the results obtained.


2017 ◽  
pp. 780-787
Author(s):  
Torleif Bramryd ◽  
Michael Johansson

Provided that produced biogas is effectively collected, landfills are important sinks for organic carbon compensating for emissions of CO2 from burning of fossil fuels. Sequestrating of long-lived organic carbon in the landfill itself is the most pronounced factor, but also other processes during landfill management will increase the capture and binding of CO2.. Compost produced in connection to the landfills and applied as soil improvement, is another important sink for organic carbon.The landfills in the World have been estimated to accumulate around 100 x 106 metric tons of C. Normally about 25-40 percent of the total carbon content in the waste can be converted into biogas in traditional landfills. During landfilling most of the organic carbon in fossil derived products, like plastics, synthetic rubber, textiles and other synthetic materials, As these products take part in the methane gas production, the landfill gas (biogas) can be regarded as a true biofuel. In contrast to incineration, high moisture content in the waste will not decrease the yield of energy per ton of waste. In a reactor landfill treating approximately 100 000 tons of waste per year, a longlived organic fraction corresponding to about 45 000 metric tons of carbon dioxide is longterm accumulated each year. This compensates for the annual carbon dioxide emissions from about 15 000 – 20 000 cars, provided that each one runs 15 000 km per year with fossil fuel. The technique for effective collection of landfill gas, and new techniques to upgrade and liquefy the biogas, have decreased the risk for emissions to the atmosphere. Modern bioreactor landfills have been estimated to have less than 10% diffuse biogas emissions to the atmosphere. Also in Sweden (Helsingborg), plants are built to convert landfill gas to upgraded, liquefied motor fuel. This will lead to strongly reduced diffuse emissions of landfill gas to the atmosphere. The utilization of leachates as forest fertilizer results in an improved biomass production and increased accumulation of soil organic matter. Increased tree and field layer productivity also means that the potential for water evaporation (eg. evapotranspiration) increase, reducing the costs for waste-water treatment or the risk for diffuse ground water pollution. Also in the mineral soil, increased long-lived fractions of humus normally are found. This should be added to the carbon accumulating effect of the landfill itself, where long-lived organic matter, mainly derived from lignin and from fossil fractions as plastics and synthetic textiles is long-term accumulated. In this respect the landfill system has similar effects compared to natural peatlands and lake and sea sediments, Ifproduced biogas is collected effectively, the landfill thus can be an important factor to counteract the “green-house effect” and climate change.


Sign in / Sign up

Export Citation Format

Share Document