Islands in the sand: are all hypolithic microbial communities the same?

2020 ◽  
Vol 97 (1) ◽  
Author(s):  
Pedro H Lebre ◽  
Eric Bottos ◽  
Thulani P Makhalanyane ◽  
Ian Hogg ◽  
Don A Cowan

ABSTRACT Hypolithic microbial communities (hypolithons) are complex assemblages of phototrophic and heterotrophic organisms associated with the ventral surfaces of translucent minerals embedded in soil surfaces. Past studies on the assembly, structure and function of hypolithic communities have tended to use composite samples (i.e. bulked hypolithic biomass) with the underlying assumption that samples collected from within a ‘homogeneous’ locality are phylogenetically homogeneous. In this study, we question this assumption by analysing the prokaryote phylogenetic diversity of multiple individual hypolithons: i.e. asking the seemingly simple question of ‘Are all hypolithons the same’? Using 16S rRNA gene-based phylogenetic analysis of hypolithons recovered for a localized moraine region in the Taylor Valley, McMurdo Dry Valleys, Antarctica, we demonstrate that these communities are heterogeneous at very small spatial scales (<5 m). Using null models of phylogenetic turnover, we showed that this heterogeneity between hypolithons is probably due to stochastic effects such as dispersal limitations, which is entirely consistent with the physically isolated nature of the hypolithic communities (‘islands in the sand’) and the almost complete absence of a liquid continuum as a mode of microbial transport between communities.

2020 ◽  
Author(s):  
Jeffrey Marlow ◽  
Rachel Spietz ◽  
Keun-Young Kim ◽  
Mark Ellisman ◽  
Peter Girguis ◽  
...  

AbstractCoastal salt marshes are key sites of biogeochemical cycling and ideal systems in which to investigate the community structure of complex microbial communities. Here, we clarify structural-functional relationships among microorganisms and their mineralogical environment, revealing previously undescribed metabolic activity patterns and precise spatial arrangements within salt marsh sediment. Following 3.7-day in situ incubations with a non-canonical amino acid that was incorporated into new biomass, samples were embedded and analyzed by correlative fluorescence and electron microscopy to map the microscale arrangements of anabolically active and inactive organisms alongside mineral grains. Parallel sediment samples were examined by fluorescence-activated cell sorting and 16S rRNA gene sequencing to link anabolic activity to taxonomic identity. Both approaches demonstrated a rapid decline in the proportion of anabolically active cells with depth into salt marsh sediment, from ∼60% in the top cm to 10-25% between 2-7 cm. From the top to the bottom, the most prominent active community members shifted from sulfur cycling phototrophic consortia, to sulfate-reducing bacteria likely oxidizing organic compounds, to fermentative lineages. Correlative microscopy revealed more abundant (and more anabolically active) organisms around non-quartz minerals including rutile, orthoclase, and plagioclase. Microbe-mineral relationships appear to be dynamic and context-dependent arbiters of biogeochemical cycling.Statement of SignificanceMicroscale spatial relationships dictate critical aspects of a microbiome’s inner workings and emergent properties, such as evolutionary pathways, niche development, and community structure and function. However, many commonly used methods in microbial ecology neglect this parameter – obscuring important microbe-microbe and microbe-mineral interactions – and instead employ bulk-scale methodologies that are incapable of resolving these intricate relationships.This benchmark study presents a compelling new approach for exploring the anabolic activity of a complex microbial community by mapping the precise spatial configuration of anabolically active organisms within mineralogically heterogeneous sediment through in situ incubation, resin embedding, and correlative fluorescence and electron microscopy. In parallel, active organisms were identified through fluorescence-activated cell sorting and 16S rRNA gene sequencing, enabling a powerful interpretive framework connecting location, identity, activity, and putative biogeochemical roles of microbial community members.We deploy this novel approach in salt marsh sediment, revealing quantitative insights into the fundamental principles that govern the structure and function of sediment-hosted microbial communities. In particular, at different sediment horizons, we observed striking changes in the proportion of anabolically active cells, the identities of the most prominent active community members, and the nature of microbe-mineral affiliations. Improved approaches for understanding microscale ecosystems in a new light, such as those presented here, reveal environmental parameters that promote or constrain metabolic activity and clarify the impact that microbial communities have on our world.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lauren M. Lui ◽  
Erica L.-W. Majumder ◽  
Heidi J. Smith ◽  
Hans K. Carlson ◽  
Frederick von Netzer ◽  
...  

Over the last century, leaps in technology for imaging, sampling, detection, high-throughput sequencing, and -omics analyses have revolutionized microbial ecology to enable rapid acquisition of extensive datasets for microbial communities across the ever-increasing temporal and spatial scales. The present challenge is capitalizing on our enhanced abilities of observation and integrating diverse data types from different scales, resolutions, and disciplines to reach a causal and mechanistic understanding of how microbial communities transform and respond to perturbations in the environment. This type of causal and mechanistic understanding will make predictions of microbial community behavior more robust and actionable in addressing microbially mediated global problems. To discern drivers of microbial community assembly and function, we recognize the need for a conceptual, quantitative framework that connects measurements of genomic potential, the environment, and ecological and physical forces to rates of microbial growth at specific locations. We describe the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental design framework for conducting process-focused microbial ecology studies that incorporates biological, chemical, and physical drivers of a microbial system into a conceptual model. Through iterative cycles that advance our understanding of the coupling across scales and processes, we can reliably predict how perturbations to microbial systems impact ecosystem-scale processes or vice versa. We describe an approach and potential applications for using the FICSME to elucidate the mechanisms of globally important ecological and physical processes, toward attaining the goal of predicting the structure and function of microbial communities in chemically complex natural environments.


2021 ◽  
Author(s):  
Patrick H. Thieringer ◽  
Alexander S. Honeyman ◽  
John R. Spear

The deep biosphere hosts uniquely adapted microorganisms overcoming geochemical extremes at significant depths within the crust of the Earth. While numerous novel microbial members with unique physiological modifications remain to be identified, even greater attention is required to understand the near-subsurface and its continuity with surface systems. This raises key questions about networking of surface hydrology, geochemistry affecting near-subsurface microbial composition, and resiliency of subsurface ecosystems. Here, we apply molecular biological and geochemical approaches to determine temporal microbial composition and environmental conditions of filtered borehole fluid from the Edgar Experimental Mine (~150 meters below the surface) in Idaho Springs, CO. Samples were collected over a 4-year collection period from expandable packers deployed to accumulate fluid in previously drilled boreholes located centimeters to meters apart, revealing temporal evolution of borehole microbiology. Meteoric water feeding boreholes demonstrated variable recharge rates due to a complex and undefined fracture system within the host rock. 16S rRNA gene analysis determined unique microbial communities occupy the four boreholes examined. Two boreholes yielded sequences revealing the presence of Proteobacteria, Firmicutes, and Nanoarcheota associated with endemic subsurface communities. Two other boreholes presented sequences related to soil-originating microbiota, which likely indicate a direct link to surface infiltration. High concentrations of sulfate suggest sulfur-related metabolic strategies dominate within these near-subsurface boreholes. Overall, results indicate microbial community composition in the near-subsurface is highly dynamic at very fine spatial scales (<20cm) within fluid-rock equilibrated boreholes, which additionally supports the role of a relationship for surface geochemical processes infiltrating and influencing subsurface environments.


2019 ◽  
Author(s):  
Philipp Rausch ◽  
Malte Rühlemann ◽  
Britt Hermes ◽  
Shauni Doms ◽  
Tal Dagan ◽  
...  

AbstractBackgroundThe interplay between hosts and their associated microbiome is now recognized as a fundamental basis of the ecology, evolution and development of both players. These interdependencies inspired a new view of multicellular organisms as “metaorganisms”. The goal of the Collaborative Research Center “Origin and Function of Metaorganisms” is to understand why and how microbial communities form long-term associations with hosts from diverse taxonomic groups, ranging from sponges to humans in addition to plants.MethodsIn order to optimize the choice of analysis procedures, which may differ according to the host organism and question at hand, we systematically compared the two main technical approaches for profiling microbial communities, 16S rRNA gene amplicon- and metagenomic shotgun sequencing across our panel of ten host taxa. This includes two commonly used 16S rRNA gene regions and two amplification procedures, thus totaling five different microbial profiles per host sample.ConclusionWhile 16S rRNA gene-based analyses are subject to much skepticism, we demonstrate that many aspects of bacterial community characterization are consistent across methods and that metagenomic shotgun results are largely dependent on the employed pipeline. The resulting insight facilitates the selection of appropriate methods across a wide range of host taxa. Finally, by contrasting taxonomic and functional profiles and performing phylogenetic analysis, we provide important and novel insight into broad evolutionary patterns among metaorganisms, whereby the transition of animals from an aquatic to a terrestrial habitat marks a major event in the evolution of host-associated microbial composition.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adam J. Solon ◽  
Claire Mastrangelo ◽  
Lara Vimercati ◽  
Pacifica Sommers ◽  
John L. Darcy ◽  
...  

Cold, dry, and nutrient-poor, the McMurdo Dry Valleys of Antarctica are among the most extreme terrestrial environments on Earth. Numerous studies have described microbial communities of low elevation soils and streams below glaciers, while less is known about microbial communities in higher elevation soils above glaciers. We characterized microbial life in four landscape features (habitats) of a mountain in Taylor Valley. These habitats varied significantly in soil moisture and include moist soils of a (1) lateral glacial moraine, (2) gully that terminates at the moraine, and very dry soils on (3) a southeastern slope and (4) dry sites near the gully. Using rRNA gene PCR amplicon sequencing of Bacteria and Archaea (16S SSU) and eukaryotes (18S SSU), we found that all habitat types harbored significantly different bacterial and eukaryotic communities and that these differences were most apparent when comparing habitats that had macroscopically visible soil crusts (gully and moraine) to habitats with no visible crusts (near gully and slope). These differences were driven by a relative predominance of Actinobacteria and a Colpodella sp. in non-crust habitats, and by phototrophic bacteria and eukaryotes (e.g., a moss) and predators (e.g., tardigrades) in habitats with biological soil crusts (gully and moraine). The gully and moraine also had significantly higher 16S and 18S ESV richness than the other two habitat types. We further found that many of the phototrophic bacteria and eukaryotes of the gully and moraine share high sequence identity with phototrophs from moist and wet areas elsewhere in the Dry Valleys and other cold desert ecosystems. These include a Moss (Bryum sp.), several algae (e.g., a Chlorococcum sp.) and cyanobacteria (e.g., Nostoc and Phormidium spp.). Overall, the results reported here broaden the diversity of habitat types that have been studied in the Dry Valleys of Antarctica and suggest future avenues of research to more definitively understand the biogeography and factors controlling microbial diversity in this unique ecosystem.


2012 ◽  
Vol 6 (5) ◽  
pp. 3823-3862 ◽  
Author(s):  
J. W. Eveland ◽  
M. N. Gooseff ◽  
D. J. Lampkin ◽  
J. E. Barrett ◽  
C. D. Takacs-Vesbach

Abstract. Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via aeolian redistribution, in topographic lees along the valley bottoms, forming thousands of discontinuous snow patches. These patches have the potential to act as significant sources of local melt water, controlling biogeochemical cycling and the landscape distribution of microbial communities. Therefore, determining the spatial and temporal dynamics of snow at multiple scales is imperative to understanding the broader ecological role of snow in this region. High-resolution satellite imagery acquired during the 2009–2010 and 2010–2011 austral summers was used to quantify the distribution of snow across Taylor and Wright Valleys. Extracted snow-covered area from the imagery was used as the basis for assessing seasonal variability and seasonal controls on accumulation and ablation of snow at multiple scales. In addition, fifteen 1 km2 plots (3 in each of 5 study regions) were selected to assess the prevalence of snow cover at finer spatial scales. Results confirm that snow patches tend to form in the same locations each year with some minor deviations observed. At the snow-patch scale, neighboring patches often exhibit considerable differences in aerial ablation rates, and particular snow patches do not reflect trends for snow-covered area observed at the landscape scale. These differences are presumably related to microtopographic influences over snow depth and exposure. This highlights the importance of both the landscape and snow-patch scales in assessing the effects of snow cover on biogeochemical cycling and microbial communities.


mSystems ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Brittany A. Niccum ◽  
Erik K. Kastman ◽  
Nicole Kfoury ◽  
Albert Robbat ◽  
Benjamin E. Wolfe

ABSTRACT Diversification can generate genomic and phenotypic strain-level diversity within microbial species. This microdiversity is widely recognized in populations, but the community-level consequences of microbial strain-level diversity are poorly characterized. Using the cheese rind model system, we tested whether strain diversity across microbiomes from distinct geographic regions impacts assembly dynamics and functional outputs. We first isolated the same three bacterial species (Staphylococcus equorum, Brevibacterium auranticum, and Brachybacterium alimentarium) from nine cheeses produced in different regions of the United States and Europe to construct nine synthetic microbial communities consisting of distinct strains of the same three bacterial species. Comparative genomics identified distinct phylogenetic clusters and significant variation in genome content across the nine synthetic communities. When we assembled each synthetic community with initially identical compositions, community structure diverged over time, resulting in communities with different dominant taxa. The taxonomically identical communities showed differing responses to abiotic (high salt) and biotic (the fungus Penicillium) perturbations, with some communities showing no response and others substantially shifting in composition. Functional differences were also observed across the nine communities, with significant variation in pigment production (light yellow to orange) and in composition of volatile organic compound profiles emitted from the rinds (nutty to sulfury). IMPORTANCE Our work demonstrated that the specific microbial strains used to construct a microbiome could impact the species composition, perturbation responses, and functional outputs of that system. These findings suggest that 16S rRNA gene taxonomic profiles alone may have limited potential to predict the dynamics of microbial communities because they usually do not capture strain-level diversity. Observations from our synthetic communities also suggest that strain-level diversity has the potential to drive variability in the aesthetics and quality of surface-ripened cheeses.


2021 ◽  
Vol 368 (3) ◽  
Author(s):  
Justin D. Stewart ◽  
Amy Ontai ◽  
Kizil Yusoof ◽  
Kelly S. Ramirez ◽  
Teresa Bilinski

ABSTRACT Empirical evidence supports selection of soil microbial communities by edaphic properties across large spatial scales; however, less is known at smaller spatial scales. The goal of this research was to evaluate relationships between ecosystem characteristics and bacterial community structure/function at broad taxonomic resolutions in soils across small spatial scales. We employed 16S rRNA gene sequencing, community-level physiological profiling and soil chemical analysis to address this goal. We found weak relationships between gradients in soil characteristics and community structure/function. Specific operational taxonomic units did not respond to edaphic variation, but Acidobacteria, Bacteroidetes and Nitrospirae shifted their relative abundances. High metabolic diversity within the bacterial communities was observed despite general preference of Tween 40/80. Carbon metabolism patterns suggest dominance of functional specialists at our times of measurement. Pairwise comparison of carbon metabolism patterns indicates high levels of functional redundancy. Lastly, at broad taxonomic scales, community structure and function weakly covary with edaphic properties. This evidence suggests that stochasticity or unmeasured environmental gradients may be influential in bacterial community assembly in soils at small spatial scales.


Author(s):  
A. Meziti ◽  
E. Nikouli ◽  
J.K. Hatt ◽  
K. Konstantinidis ◽  
K. Ar. Kormas

AbstractGeothermal springs are barely affected by environmental conditions aboveground as they are continuously supplied with subsurface water with little variability in chemistry. Therefore, changes in their microbial community composition and function, especially over a long period, are expected to be limited but this assumption has not yet been rigorously tested. Toward closing this knowledge gap, we applied whole metagenome sequencing to 17 water samples collected between 2010 and 2016 (two to four samples per year) from the Thermopyles sulfur geothermal springs in central Greece. As revealed by 16S rRNA gene fragments recovered in the metagenomes, Epsilonproteobacteria-related operational taxonomic units (OTUs) dominated most samples, while grouping of samples based on OTU abundances exhibited no apparent seasonal pattern. Similarities between samples regarding functional gene content were high, especially in comparison to other surface water systems in Greece, with all samples sharing >70% similarity in functional pathways. These community-wide patterns were further confirmed by analysis of metagenome-assembled genomes (MAGs), which showed - in addition- that novel species and genera of the chemoautotrophic Campylobacterales order dominated the springs. These MAGs carried different pathways for thiosulfate and/or sulfide oxidation coupled to carbon fixation pathways. Overall, our study showed that even in the long term, functions of microbial communities in a moderately hot terrestrial spring remain stable, driving presumably the corresponding stability in community structure.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12359
Author(s):  
Ariel R. Heminger ◽  
Lisa K. Belden ◽  
Jacob N. Barney ◽  
Brian D. Badgley ◽  
David C. Haak

Fruit house microbial communities that are unique from the rest of the plant. While symbiotic microbial communities complete important functions for their hosts, the fruit microbiome is often understudied compared to other plant organs. Fruits are reproductive tissues that house, protect, and facilitate the dispersal of seeds, and thus they are directly tied to plant fitness. Fruit microbial communities may, therefore, also impact plant fitness. In this study, we assessed how bacterial communities associated with fruit of Solanum carolinense, a native herbaceous perennial weed, vary at fine spatial scales (<0.5 km). A majority of the studies conducted on plant microbial communities have been done at large spatial scales and have observed microbial community variation across these large spatial scales. However, both the environment and pollinators play a role in shaping plant microbial communities and likely have impacts on the plant microbiome at fine scales. We collected fruit samples from eight sampling locations, ranging from 2 to 450 m apart, and assessed the fruit bacterial communities using 16S rRNA gene amplicon sequencing. Overall, we found no differences in observed richness or microbial community composition among sampling locations. Bacterial community structure of fruits collected near one another were not more different than those that were farther apart at the scales we examined. These fine spatial scales are important to obligate out-crossing plant species such as S. carolinense because they are ecologically relevant to pollinators. Thus, our results could imply that pollinators serve to homogenize fruit bacterial communities across these smaller scales.


Sign in / Sign up

Export Citation Format

Share Document