Newly designed high-coverage degenerate primers for nitrogen removal mechanism analysis in a partial nitrification-anammox (PN/A) process

2019 ◽  
Vol 96 (1) ◽  
Author(s):  
Qingkun Wang ◽  
Jianzhong He

ABSTRACT Reliable tools for quantification of different functional populations are required to achieve stable, effective nutrients removal in partial nitrification and anammox (PN/A) processes. Here we report the design and validation of degenerate PCR primer pairs targeting anammox bacteria, aerobic ammonium-oxidizing bacteria (AeAOB) and nitrite-oxidizing bacteria (NOB) with high coverage but without sacrificing specificity. The new primer pairs are able to cover a broader range of the targeted populations (58.4 vs 21.7%, 49.5 vs 47.6%, 80.7 vs 57.2% and 70.5 vs 42.3% of anammox bacteria, AeAOB, Nitrobacter and Nitrospina, respectively) than previously published primers. Particularly, the Amx719F/875R primer can retrieve a larger number of 16S rRNA genes from different types of samples with amplicons covering all known anammox bacteria genera (100% coverage) including the recently found novel genus, Asahi BRW. These newly desinged primers will provide a more reliable molecular tool to investigate the mechanisms of nitrogen removal in PN/A processes, which can provide clearer links between reactor performance, the metabolic activities and abundances of functional populations, shedding light on conditions that are favorable to the establishment of stable PN/A.

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Alejandro Gonzalez-Martinez ◽  
Alejandro Rodriguez-Sanchez ◽  
Belén Rodelas ◽  
Ben A. Abbas ◽  
Maria Victoria Martinez-Toledo ◽  
...  

Identification of anaerobic ammonium oxidizing (anammox) bacteria by molecular tools aimed at the evaluation of bacterial diversity in autotrophic nitrogen removal systems is limited by the difficulty to design universal primers for theBacteriadomain able to amplify the anammox 16S rRNA genes. A metagenomic analysis (pyrosequencing) of total bacterial diversity including anammox population in five autotrophic nitrogen removal technologies, two bench-scale models (MBR and Low Temperature CANON) and three full-scale bioreactors (anammox, CANON, and DEMON), was successfully carried out by optimization of primer selection and PCR conditions (annealing temperature). The universal primer 530F was identified as the best candidate for total bacteria and anammox bacteria diversity coverage. Salt-adjusted optimum annealing temperature of primer 530F was calculated (47°C) and hence a range of annealing temperatures of 44–49°C was tested. Pyrosequencing data showed that annealing temperature of 45°C yielded the best results in terms of species richness and diversity for all bioreactors analyzed.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 346
Author(s):  
Keugtae Kim ◽  
Yong-Gyun Park

Conventional biological nutrient removal processes in municipal wastewater treatment plants are energy-consuming, with oxygen supply accounting for 45–75% of the energy expenditure. Many recent studies examined the implications of the anammox process in sidestream wastewater treatment to reduce energy consumption, however, the process did not successfully remove nitrogen in mainstream wastewater treatment with relatively low ammonia concentrations. In this study, blue light was applied as an inhibitor of nitrite-oxidizing bacteria (NOB) in a photo sequencing batch reactor (PSBR) containing raw wastewater. This simulated a biological nitrogen removal system for the investigation of its application potential in nitrite accumulation and nitrogen removal. It was found that blue light illumination effectively inhibited NOB rather than ammonia-oxidizing bacteria due to their different sensitivity to light, resulting in partial nitrification. It was also observed that the NOB inhibition rates were affected by other operational parameters like mixed liquor suspended solids (MLSS) concentration and sludge retention time (SRT). According to the obtained results, it was concluded that the process efficiency of partial nitrification and anammox (PN/A) could be significantly enhanced by blue light illumination with appropriate MLSS concentration and SRT conditions.


2008 ◽  
Vol 58 (2) ◽  
pp. 277-284 ◽  
Author(s):  
Kai M. Udert ◽  
Elija Kind ◽  
Mieke Teunissen ◽  
Sarina Jenni ◽  
Tove A. Larsen

The combination of nitritation and autotrophic denitrification (anammox) in a single sequencing batch reactor (SBR) is an energy efficient process for nitrogen removal from high-strength ammonia wastewaters. So far, the process has been successfully applied to digester supernatant. However, the process could also be suitable to treat source-separated urine, which has very high ammonium and organic substrate concentrations (up to 8,200 gN/m3 and 10,000 gCOD/m3). In this study, reactor performance was tested for digester supernatant and diluted source-separated urine. Ammonium concentrations in both solutions were similar (between 611 and 642 gN/m3), thus reactor performance could be directly compared. Differences were mainly due to higher activity of heterotrophic bacteria in urine. Nitrogen removal was slightly higher for source-separated urine, because heterotrophic bacteria denitrified the nitrate that was produced by anammox bacteria. In spite of higher heterotrophic growth with source-separated urine, calculated sludge concentrations at steady state were higher with digester supernatant due to accumulation of inert particulate organic matter from the influent. Although the sludge concentrations are less problematic for source-separated urine, process instabilities are more likely, because lower pH values are reached and heterotrophic denitrification can cause sudden increases of nitrite concentrations and/or nitric oxide. Both compounds inhibit aerobic ammonium oxidizing bacteria, heterotrophic bacteria and, most importantly, anammox bacteria. Nitrite and nitric oxide production by heterotrophic denitrification must be better understood to optimize nitritation/anammox for source-separated urine.


2007 ◽  
Vol 73 (14) ◽  
pp. 4648-4657 ◽  
Author(s):  
Dagmar Woebken ◽  
Bernhard M. Fuchs ◽  
Marcel M. M. Kuypers ◽  
Rudolf Amann

ABSTRACT Recent studies have shown that the anaerobic oxidation of ammonium by anammox bacteria plays an important role in catalyzing the loss of nitrogen from marine oxygen minimum zones (OMZ). However, in situ oxygen concentrations of up to 25 μM and ammonium concentrations close to or below the detection limit in the layer of anammox activity are hard to reconcile with the current knowledge of the physiology of anammox bacteria. We therefore investigated samples from the Namibian OMZ by comparative 16S rRNA gene analysis and fluorescence in situ hybridization. Our results showed that “Candidatus Scalindua” spp., the typical marine anammox bacteria, colonized microscopic particles that were likely the remains of either macroscopic marine snow particles or resuspended particles. These particles were slightly but significantly (P < 0.01) enriched in Gammaproteobacteria (11.8% ± 5.0%) compared to the free-water phase (8.1% ± 1.8%). No preference for the attachment to particles could be observed for members of the Alphaproteobacteria and Bacteroidetes, which were abundant (12 to 17%) in both habitats. The alphaproteobacterial SAR11 clade, the Euryarchaeota, and group I Crenarchaeota, were all significantly depleted in particles compared to their presence in the free-water phase (16.5% ± 3.5% versus 2.6% ± 1.7%, 2.7% ± 1.9% versus <1%, and 14.9% ± 4.6% versus 2.2% ± 1.8%, respectively, all P < 0.001). Sequence analysis of the crenarchaeotal 16S rRNA genes showed a 99% sequence identity to the nitrifying “Nitrosopumilus maritimus.” Even though we could not observe conspicuous consortium-like structures of anammox bacteria with particle-enriched bacterioplankton groups, we hypothesize that members of Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes play a critical role in extending the anammox reaction to nutrient-depleted suboxic water layers in the Namibian upwelling system by creating anoxic, nutrient-enriched microniches.


2008 ◽  
Vol 58 (10) ◽  
pp. 1889-1894 ◽  
Author(s):  
C. Wantawin ◽  
J. Juateea ◽  
P. L. Noophan ◽  
J. Munakata-Marr

Conventional nitrification-denitrification treatment is a common way to treat nitrogen in wastewater, but this process is costly for low COD/N wastewaters due to the addition of air and external carbon-source. However, ammonia may alternatively be converted to dinitrogen gas by autotrophic bacteria utilizing aerobically autotrophically produced nitrite as an electron acceptor under anoxic conditions. Lab-scale sequencing batch biofilm reactors (SBBRs) inoculated with normal nitrifying sludge were employed to study the potential of an oxygen-limited autotrophic nitrification-denitrification process initiated with typical nitrifying sludge for treating a synthetic ammonia wastewater devoid of organic carbon in one step. The ring-laced fibrous carrier (length 0.32 m, surface area 3.4 m2/m) was fixed vertically in a 3 L reactor. Two different air supply modes were applied:continuous aeration to control dissolved oxygen at 1.5 mg/L and intermittent aeration. High nitrogen removals of more than 50% were obtained in both SBBRs. At an ammonia loading of 0.882 gm N/m2-day [hydraulic retention time (HRT) of 24 hr], the SBBR continuously aerated to 1.5 mg DO/L had slightly higher nitrogen removal (64%) than the intermittently alternated SBBR (55%). The main form of residual nitrogen in the effluent was ammonia, at concentrations of 25 mg/L and 37 mg N/L in continuous and intermittent aeration SBBRs, respectively. Ammonia was completely consumed when ammonia loading was reduced to 0.441 gm N/m2-day [HRT extended to 48 hr]. The competitive use of nitrite by aerobic nitrite oxidizing bacteria (ANOB) with anaerobic ammonia-oxidizing bacteria (anammox bacteria) during the expanded aeration period under low remaining ammonia concentration resulted in higher nitrate production and lower nitrogen loss in the continuous aeration SBBR than in the intermittent aeration SBBR. The nitrogen removal efficiencies in SBBRs with continuous and alternating aerated were 80% and 86% respectively. Specific microorganisms in the biofilm were characterized using fluorescence in situ hybridization. Aerobic ammonia-oxidizing bacteria (AAOB) occurred side by side with putative anammox bacteria (cells hybridizing with probe AMX820) throughout the biofilm, though ANOB were rarely detected.


2017 ◽  
Vol 75 (7) ◽  
pp. 1712-1721 ◽  
Author(s):  
Zhaoming Zheng ◽  
Yun Li ◽  
Jun Li ◽  
Yanzhuo Zhang ◽  
Wei Bian ◽  
...  

The aim of the present work was to evaluate the effects of carbon sources and chemical oxygen demand (COD)/NO2−-N ratios on the anammox–denitrification coupling process of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm. Also, the anammox activities of the SNAD biofilm were investigated under different temperature. Kaldnes rings taken from the SNAD biofilm reactor were operated in batch tests to determine the nitrogen removal rates. As a result, with the carbon source of sodium acetate, the appropriate COD/NO2−-N ratios for the anammox–denitrification coupling process were 1 and 2. With the COD/NO2−-N ratios of 1, 2, 3, 4 and 5, the corresponding NO2−-N consumption via anammox was 87.1%, 52.2%, 29.3%, 23.7% and 16.3%, respectively. However, with the carbon source of sodium propionate and glucose, the anammox bacteria was found to perform higher nitrite competitive ability than denitrifiers at the COD/NO2−-N ratio of 5. Also, the SNAD biofilm could perform anammox activity at 15 °C with the nitrogen removal rate of 0.071 kg total inorganic nitrogen per kg volatile suspended solids per day. These results indicated that the SNAD biofilm process might be feasible for the treatment of municipal wastewater at normal temperature.


2016 ◽  
Author(s):  
Valerie F. Schwab ◽  
Martina Hermann ◽  
Vanessa-Nina Roth ◽  
Gerd Gleixner ◽  
Robert Lehmann ◽  
...  

Abstract. Microorganisms in groundwater play an important role in aquifer biogeochemical cycles and water quality. However, the mechanisms linking the functional diversity of microbial populations and the groundwater physicochemistry are still not well understood due to the complexity of interactions between surface and subsurface. Here, we used phospholipid fatty acids (PLFAs) relative abundances to link specific biochemical markers within the microbial communities to the spatio-temporal changes of the groundwater physicochemistry. PLFAs were isolated from groundwater of two physicochemically distinct aquifer assemblages in central Germany (Thuringia). The functional diversities of the microbial communities were mainly correlated with groundwater chemistry, including dissolved O2, Fet and NH4&amp;plus; concentrations. Abundances of PLFAs derived from eukaryotes and potential nitrite oxidizing bacteria (11MeC16:0 as biomarker for Nitrospira moscoviensis) were high at sites with elevated O2 concentration where groundwater recharge supplies both bioavailable organic substrates and NH4&amp;plus; needed to sustain heterotrophic growth and nitrification processes. In anoxic groundwaters more rich in Fet, PLFAs abundant in sulphate reducing bacteria (SRB), iron-reducing bacteria and fungi increased with Fet and HCO3− concentrations suggesting the occurrence of active iron-reduction and the possible role of fungi in meditating iron solubilisation and transport in those aquifer domains. In NH4&amp;plus; richer anoxic groundwaters, anammox bacteria and SRB- derived PLFAs increased with NH4&amp;plus; concentration further evidencing the dependence of the anammox process on ammonium concentration and potential links between SRB and anammox bacteria. Additional support of the PLFA-based bacterial communities was found in DNA and RNA-based Illumina MiSeq amplicon sequencing of bacterial 16S rRNA genes, which evidenced high predominance of nitrite-oxidizing bacteria Nitrospira e.g. Nitrospira moscoviensis in oxic zones of the aquifers and of anammox bacteria in NH4&amp;plus; richer anoxic groundwater. Higher relative abundances of sequence reads in the RNA-based data sets affiliated with iron-reducing bacteria in Fet richer groundwater supported the occurrence of active dissimilatory iron-reduction. The functional diversity of the microbial communities in these biogeochemically distinct groundwater assemblages can be largely attributed to the redox conditions linked to changes in bioavailable substrates and input of substrates with the seepage. Our results demonstrate the power of complementary information derived from PLFA-based and sequencing-based approaches.


2017 ◽  
Author(s):  
◽  
Jashan Gokal

Domestic wastewater contains a high nutrient load, primarily in the form of Carbon (C), Nitrogen (N), and Phosphorous (P) compounds. If left untreated, these nutrients can cause eutrophication in receiving environments. Biological wastewater treatment utilizes a suspension of microorganisms that metabolize this excess nutrient load. Nitrogen removal in these systems are due to the synergistic processes of nitrification and denitrification, each of which requires its own set of operating parameters and controlling microbial groups. An alternative N-removal pathway termed the anammox process allows for total N-removal in a single step under anoxic conditions. This process, mediated by the anammox bacterial group, requires no organic carbon, produces negligible greenhouse gases and requires almost 50 % less energy than the conventional process, making it a promising new technology for efficient and cost-effective N-removal. In this study, a sequencing batch reactor (SBR) was established for the autotrophic removal of N-rich wastewater through an anammox-centric bacterial consortia. The key microbial members of this consortia were characterized and quantified over time using molecular methods and next generation sequencing to determine if the operational conditions had any effect on the seed inoculum population composition. Additionally, local South African wastewater treatment plants were screened for the presence of anammox bacteria through 16S rRNA amplification and enrichment in different reactor types. A 3 L bench scale SBR was inoculated with active biomass (~ 5 % (v/v)) sourced from a parent anammox enrichment reactor, and maintained at a temperature of 35 °C ± 1 °C. The reactor was fed with a synthetic wastewater medium containing no organic C, minimal dissolved oxygen (< 0.5 mg/L), and N in the form of ammonium and nitrite in the ratio of 1:1.3. The reactor was operated for a period of 366 days and the effluent ammonium, nitrite and nitrate were measured during this period. The hydraulic retention time was controlled at 4.55 days from Day 1 to Day 250, and thereafter shortened to 1.52 days from Day 251 to Day 360 due to an increased nitrogen removal rate (NRR). During Phase I of operation (Day 1 to Day 150), the reactor performance gradually increased up to an NRR of ~160 mg N/day. During Phase II (Day 151 to Day 250), the overall reactor performance decreased with the NRR decreasing to ~90 mg N/day, while Phase III (Day 251 to Day 366) displayed a gradual recovery of NRR back to the reactor optimum of ~160 mg N/day. The accumulation of nitrate in the effluent during the latter parts of Phase II and Phase III, coupled with oxygen ingress (~2.1 mg/L) in the same period, indicated that it was not the anammox pathway that was dominating N-removal within the reactor, but more likely the second half of the nitrification pathway mediated by the nitrite oxidizing bacteria (NOB). This was further confirmed through molecular analysis, which indicated that the bacterial population had shifted significantly over the course of reactor operation. Quantitative PCR methods displayed a decrease in all the key N-removing population groups from Day 1 to Day 140, and a marginal increase in anammox and aerobic ammonia oxidizing bacteria from Day 140 – Day 260. From Day 300 onwards, NOB had started dominating the system, simultaneously suppressing the growth of other N-removing bacterial groups. Despite this, the NRR peaked during this period, indicating an alternative mechanism for ammonia removal within the reactor system. A total population analysis using NGS was also performed, which corroborated the QPCR results and displayed a population shift away from anammox bacteria towards predominantly NOB and members of the phylum Chloroflexi. The proliferation of aerobic NOB and Chloroflexi, and the suppression of anammox bacteria, indicated that DO ingress was indeed the primary cause of the population shift within the reactor. Despite this population shift, N-removal within the reactor remained high. New pathways have recently emerged which implicate these two groups as potential N oxidizers, with specific NOB groups showing the ability for oxidation of ammonia through the comammox process, and members of the Phylum Chloroflexi being capable of nitrite reduction. This could imply that an alternate pathway was responsible for the majority of N-removal within the system, in addition to the anammox and conventional nitrification pathways. Additionally, in an attempt to detect a local anammox reservoir, eleven wastewater systems from around South Africa were screened for the presence of anammox bacteria. Through direct and nested PCR-based screening, anammox bacteria was not detectable in any of the activated sludge samples tested. Based on the operating conditions of the source wastewater systems, a subset of three sludge samples were selected for further enrichment. After 60-110 days of enrichment in multiple reactor configurations, only one reactor sample tested positive for the presence of anammox bacteria. Although this result indicates that anammox bacteria might not be ubiquitous within every biological wastewater system, it is more likely that anammox bacteria might only be present at undetectable levels, and that an extended enrichment prior to screening is necessary for a true representation of anammox bacterial prevalence in an environmental sample.


2021 ◽  
Author(s):  
Chi Zhang ◽  
Lianze Yu ◽  
Miao Zhang ◽  
Jun Wu

Abstract The nitrate produced by the one-stage partial nitritation-anammox (PN/A) process can be removed through partial denitrification (PD) by adding carbon source. In this study, a 1D multi-population biofilm model was developed to evaluate the contribution of partial denitrification on the one-stage autotrophic nitrogen removal process at influent NH4+ = 100 mg N/L. The dynamic simulation that was carried out to investigate the effect of nitrite-oxidizing bacteria (NOB) revealed that PD contributed to the reactor to obtain total nitrogen removal efficiency (TNR) of above 90% and the effluent nitrate was significantly decreased with the absence of NOB. However, PD decreased TNR of the one-stage PN/A process with the presence of NOB. Increased influent chemical oxygen demand (COD) widened the dissolved oxygen (DO) range required for high TNR whether NOB were present or not. The steady-state simulation results showed that NOB were always absent in the granules at high DO and COD levels and the optimum DO > 0.5 mg/L when influent COD was over 50 mg/L. Besides, higher influent COD/NH4+ (C/N) and larger granule diameter (diameter > 1600 µm) were contributed to widening the range of DO required for high TNR. The nitrogen removal contribution of anammox bacteria (AMX) was significantly higher than denitrification in the reactor.


2006 ◽  
Vol 53 (8) ◽  
pp. 59-67 ◽  
Author(s):  
Z. Mladenovska ◽  
H. Hartmann ◽  
T. Kvist ◽  
M. Sales-Cruz ◽  
R. Gani ◽  
...  

Application of thermal treatment at 100–140 °C as a pretreatment method prior to anaerobic digestion of a mixture of cattle and swine manure was investigated. In a batch test, biogasification of manure with thermally pretreated solid fraction proceeded faster and resulted in the increase of methane yield. The performances of two thermophilic continuously stirred tank reactors (CSTR) treating manure with solid fraction pretreated for 40 minutes at 140 °C and non-treated manure were compared. The digester fed with the thermally pretreated manure had a higher methane productivity and an improved removal of the volatile solids (VS). The properties of microbial communities of both reactors were analysed. The specific methanogenic activity (SMA) test showed that both biomasses had significant activity towards hydrogen and formate, while the activity with the VFA – acetate, propionate and butyrate – was low. The kinetic parameters of the VFA conversion revealed a reduced affinity of the microbial community from the CSTR fed with thermally pre-treated manure for acetate, propionate and butyrate. The bacterial and archaeal populations identified by t-RLFP analysis of 16S rRNA genes were found to be identical in both systems. However, a change in the abundance of the species present was detected.


Sign in / Sign up

Export Citation Format

Share Document