scholarly journals Genotypic Characterization and Biofilm Formation of Shiga-toxin producing Escherichia coli

2016 ◽  
pp. fnw291 ◽  
Author(s):  
C Picozzi ◽  
D Antoniani ◽  
I Vigentini ◽  
R Foschino
2020 ◽  
Vol 17 (4) ◽  
pp. 235-242 ◽  
Author(s):  
Zhi Ma ◽  
Kim Stanford ◽  
Xiao M. Bie ◽  
Yan D. Niu ◽  
Tim A. McAllister

Antibiotics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1423
Author(s):  
Nicola Mangieri ◽  
Roberto Foschino ◽  
Claudia Picozzi

Shiga toxin-producing Escherichia coli are pathogenic bacteria able to form biofilms both on abiotic surfaces and on food, thus increasing risks for food consumers. Moreover, biofilms are difficult to remove and more resistant to antimicrobial agents compared to planktonic cells. Bacteriophages, natural predators of bacteria, can be used as an alternative to prevent biofilm formation or to remove pre-formed biofilm. In this work, four STEC able to produce biofilm were selected among 31 different strains and tested against single bacteriophages and two-phage cocktails. Results showed that our phages were able to reduce biofilm formation by 43.46% both when used as single phage preparation and as a cocktail formulation. Since one of the two cocktails had a slightly better performance, it was used to remove pre-existing biofilms. In this case, the phages were unable to destroy the biofilms and reduce the number of bacterial cells. Our data confirm that preventing biofilm formation in a food plant is better than trying to remove a preformed biofilm and the continuous presence of bacteriophages in the process environment could reduce the number of bacteria able to form biofilms and therefore improve the food safety.


2004 ◽  
Vol 53 (10) ◽  
pp. 1037-1043 ◽  
Author(s):  
Hideki Nagano ◽  
Takashi Hirochi ◽  
Kozo Fujita ◽  
Yoshihiro Wakamori ◽  
Koichi Takeshi ◽  
...  

Food Control ◽  
2015 ◽  
Vol 50 ◽  
pp. 209-214 ◽  
Author(s):  
Li Bai ◽  
Yunchang Guo ◽  
Ruiting Lan ◽  
Yinping Dong ◽  
Wei Wang ◽  
...  

2013 ◽  
Vol 76 (9) ◽  
pp. 1513-1522 ◽  
Author(s):  
RONG WANG ◽  
NORASAK KALCHAYANAND ◽  
JOHN W. SCHMIDT ◽  
DAYNA M. HARHAY

Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.


2021 ◽  
Vol 9 (12) ◽  
pp. 2510
Author(s):  
Zhi Ma ◽  
Xia Tang ◽  
Kim Stanford ◽  
Xiaolong Chen ◽  
Tim A. McAllister ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) and Salmonella enterica are important foodborne pathogens capable of forming both single- and multi-species biofilms. In this study, the mono- and dual-species biofilms were formed by STEC O113:H21 and Salmonella enterica serovar Choleraesuis 10708 on stainless steel in the presence of beef juice over 5 d at 22 °C. The dual-species biofilm mass was substantially (p < 0.05) greater than that produced by STEC O113:H21 or S. Choleraesuis 10708 alone. However, numbers (CFU/mL) of S. Choleraesuis 10708 or STEC O113:H21 cells in the dual-species biofilm were (p < 0.05) lower than their respective counts in single-species biofilms. In multi-species biofilms, the sensitivity of S. Choleraesuis 10708 to the antimicrobial peptide WK2 was reduced, but it was increased for STEC O113:H21. Visualization of the temporal and spatial development of dual-species biofilms using florescent protein labeling confirmed that WK2 reduced cell numbers within biofilms. Collectively, our results highlight the potential risk of cross-contamination by multi-species biofilms to food safety and suggest that WK2 may be developed as a novel antimicrobial or sanitizer for the control of biofilms on stainless steel.


2022 ◽  
Vol 102 ◽  
pp. 103902
Author(s):  
Yuan Fang ◽  
Jeyachchandran Visvalingam ◽  
Peipei Zhang ◽  
Xianqin Yang

2014 ◽  
Vol 143 (11) ◽  
pp. 2367-2372 ◽  
Author(s):  
M. M. ELHADIDY ◽  
W. F. ELKHATIB

SUMMARYEscherichia coli O157:H7 strains (n = 33) recovered from different food sources in Egypt were characterized using molecular assays to identify strain genotypes associated with various levels of pathogenic potential. Genotypic characterization included: lineage-specific polymorphism assay (LSPA-6), Shiga-toxin-encoding bacteriophage insertion site assay (SBI), clade 8 typing, Tir (A255 T) polymorphism, and variant analysis of Shiga toxin 2 gene (Stx2a and Stx2c), and anti-terminator Q genes (Q933 and Q21). Genotypes LI/II (76%), SBI 1 (60·6%), clade 8 (69·7%), Tir (255 T) (72·7%) and Stx2c (45·5%) were found to be significantly more frequent compared to other genetic markers in the strains analysed. Multivariable analysis revealed a significant association between LPSA-6 and clade types as well as Tir (A255 T). To the best of our knowledge, this is the first study to report the characterization of these genetic markers in E. coli O157:H7 strains in the Middle East and Africa.


Author(s):  
Cindy Joanna Caballero-Prado ◽  
Jose Angel Merino-Mascorro ◽  
Norma Heredia ◽  
Jorge Dávila-Aviña ◽  
Santos García

2019 ◽  
Vol 7 (4) ◽  
pp. 95 ◽  
Author(s):  
Zhi Ma ◽  
Emmanuel W. Bumunang ◽  
Kim Stanford ◽  
Xiaomei Bie ◽  
Yan D. Niu ◽  
...  

Forming biofilm is a strategy utilized by Shiga toxin-producing Escherichia coli (STEC) to survive and persist in food processing environments. We investigated the biofilm-forming potential of STEC strains from 10 clinically important serogroups on stainless steel at 22 °C or 13 °C after 24, 48, and 72 h of incubation. Results from crystal violet staining, plate counts, and scanning electron microscopy (SEM) identified a single isolate from each of the O113, O145, O91, O157, and O121 serogroups that was capable of forming strong or moderate biofilms on stainless steel at 22 °C. However, the biofilm-forming strength of these five strains was reduced when incubation time progressed. Moreover, we found that these strains formed a dense pellicle at the air-liquid interface on stainless steel, which suggests that oxygen was conducive to biofilm formation. At 13 °C, biofilm formation by these strains decreased (P < 0.05), but gradually increased over time. Overall, STEC biofilm formation was most prominent at 22 °C up to 24 h. The findings in this study identify the environmental conditions that may promote STEC biofilm formation in food processing facilities and suggest that the ability of specific strains to form biofilms contributes to their persistence within these environments.


Sign in / Sign up

Export Citation Format

Share Document