scholarly journals Mixed Biofilm Formation by Shiga Toxin–Producing Escherichia coli and Salmonella enterica Serovar Typhimurium Enhanced Bacterial Resistance to Sanitization due to Extracellular Polymeric Substances†

2013 ◽  
Vol 76 (9) ◽  
pp. 1513-1522 ◽  
Author(s):  
RONG WANG ◽  
NORASAK KALCHAYANAND ◽  
JOHN W. SCHMIDT ◽  
DAYNA M. HARHAY

Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

2005 ◽  
Vol 73 (8) ◽  
pp. 5198-5203 ◽  
Author(s):  
Cristina L. C. Esteves ◽  
Bradley D. Jones ◽  
Steven Clegg

ABSTRACT Biofilms were formed by inoculations of Salmonella enterica serovar Typhimurium and Escherichia coli on HEp-2 cells. Inoculations of S. enterica serovar Typhimurium and E. coli resulted in the formation of an extensive biofilm of S. enterica serovar Typhimurium. In experiments where an E. coli biofilm was first formed followed by challenge with S. enterica serovar Typhimurium, there was significant biofilm formation by S. enterica serovar Typhimurium. The results of this study indicate that S. enterica serovar Typhimurium can outgrow E. coli in heterologous infections and displace E. coli when it forms a biofilm on HEp-2 cells.


2020 ◽  
Vol 13 (2) ◽  
pp. 5-15
Author(s):  
Maja Velhner ◽  
Branko Velebit ◽  
Dalibor Todorović ◽  
Miloš Pelić ◽  
Suzana Vidaković Knežević ◽  
...  

Shiga-toxin-producing Escherichia coli (STEC) and Salmonella enterica serovar Typhimurium (STDT104) are foodborne pathogens of public health significance. It is less known that Shiga-toxin-producing Escherichia coli (with cattle being the most probable natural reservoir) can be isolated from pigs, sheep and wildlife as well. The basic information about detection of Shiga-toxin-producing genes in STEC as well as the origin of Salmonella Typhimurium definite phage type 4 (STDT4) the virulence and resistance mechanisms including their distribution in the world is presented. Due to the foodborne transmission mechanisms we emphasize the role of veterinary scientist in Serbia in implementing good management practice on animal farms and in strengthening laboratory diagnostic capacities.


2012 ◽  
Vol 78 (15) ◽  
pp. 5424-5431 ◽  
Author(s):  
Anice Sabag-Daigle ◽  
Jitesh A. Soares ◽  
Jenée N. Smith ◽  
Mohamed E. Elmasry ◽  
Brian M. M. Ahmer

ABSTRACTIn this study, we tested the hypothesis that the SdiA proteins ofEscherichia coliandSalmonella entericaserovar Typhimurium respond to indole. While indole was found to have effects on gene expression and biofilm formation, these effects were notsdiAdependent. However, high concentrations of indole did inhibitN-acyl-l-homoserine lactone (AHL) sensing by SdiA. We conclude that SdiA does not respond to indole but indole can inhibit SdiA activity inE. coliandSalmonella.


2012 ◽  
Vol 78 (17) ◽  
pp. 6341-6344 ◽  
Author(s):  
Rong Wang ◽  
Norasak Kalchayanand ◽  
James L. Bono ◽  
John W. Schmidt ◽  
Joseph M. Bosilevac

ABSTRACTEscherichia coliO26:H11 strains were able to outgrow O157:H7 companion strains in planktonic and biofilm phases and also to effectively compete with precolonized O157:H7 cells to establish themselves in mixed biofilms.E. coliO157:H7 strains were unable to displace preformed O26:H11 biofilms. Therefore,E. coliO26:H11 remains a potential risk in food safety.


Antibiotics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 257
Author(s):  
Emmanuel W. Bumunang ◽  
Collins N. Ateba ◽  
Kim Stanford ◽  
Yan D. Niu ◽  
Y. Wang ◽  
...  

Bacteriophages, natural killers of bacteria, and plant secondary metabolites, such as condensed tannins, are potential agents for the control of foodborne pathogens. The first objective of this study evaluated the efficacy of a bacteriophage SA21RB in reducing pre-formed biofilms on stainless-steel produced by two Shiga toxin-producing Escherichia coli (STEC) strains, one from South Africa and the other from Canada. The second objective examined the anti-bacterial and anti-biofilm activity of condensed tannin (CT) from purple prairie clover and phlorotannins (PT) from brown seaweed against these strains. For 24-h-old biofilms, (O113:H21; 6.2 log10 colony-forming units per square centimeter (CFU/cm2) and O154:H10; 5.4 log10 CFU/cm2), 3 h of exposure to phage (1013 plaque-forming units per milliliter (PFU/mL)) reduced (p ≤ 0.05) the number of viable cells attached to stainless-steel coupons by 2.5 and 2.1 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. However, as biofilms matured, the ability of phage to control biofilm formation declined. In biofilms formed for 72 h (O113:H21; 5.4 log10 CFU/cm2 and O154:H10; 7 log10 CFU/cm2), reductions after the same duration of phage treatment were only 0.9 and 1.3 log10 CFU/cm2 for O113:H21 and O154:H10, respectively. Initial screening of CT and PT for anti-bacterial activity by a microplate assay indicated that both STEC strains were less sensitive (p ≤ 0.05) to CT than PT over a concentration range of 25–400 µg/mL. Based on the lower activity of CT (25–400 µg/mL), they were not further examined. Accordingly, PT (50 µg/mL) inhibited (p ≤ 0.05) biofilm formation for up to 24 h of incubation at 22 °C, but this inhibition progressively declined over 72 h for both O154:H10 and O113:H21. Scanning electron microscopy revealed that both SA21RB and PT eliminated 24 h biofilms, but that both strains were able to adhere and form biofilms on stainless-steel coupons at longer incubation times. These findings revealed that phage SA21RB is more effective at disrupting 24 than 72 h biofilms and that PT were able to inhibit biofilm formation of both E. coli O154:H10 and O113:H21 for up to 24 h.


2020 ◽  
Author(s):  
Ivan Nastasijevic ◽  
John W. Schmidt ◽  
Marija Boskovic ◽  
Milica Glisic ◽  
Norasak Kalchayanand ◽  
...  

ABSTRACTShiga toxin (stx) -producing Escherichia coli (STEC) are foodborne pathogens that have a significant impact on public health, with those possessing the attachment factor intimin (eae) referred to as enterohemorrhagic E. coli (EHEC) associated with life threatening illnesses. Cattle and beef are considered typical sources of STEC, but their presence in pork products is a growing concern. Therefore, carcasses (n=1536) at two U.S. pork processors were sampled once per season at three stages of harvest (post-stunning skins; post-scald carcasses; chilled carcasses) then examined using PCR for stx and eae, aerobic plate count (APC) and Enterobacteriaceae counts (EBC). Skins, post-scald, and chilled carcasses had prevalence of stx (85.3, 17.5, and 5.4%, respectively), with 82.3, 7.8, and 1.7% respectively, having stx and eae present. All stx positive samples were subjected to culture isolation that resulted in 368 STEC and 46 EHEC isolates. The most frequently identified STEC were serogroup O121, O8, and O91(63, 6.7, and 6.0% of total STEC, respectively). The most frequently isolated EHEC was serotype O157:H7 (63% of total EHEC). Results showed that scalding significantly reduced (P < 0.05) carcass APC and EBC by 3.00 and 2.50 log10 CFU/100 cm2 respectively. A seasonal effect was observed with STEC prevalence lower (P < 0.05) in winter. The data from this study shows significant (P < 0.05) reduction in the incidence of STEC (stx) from 85.3% to 5.4% and of EHEC (stx+eae) from 82.3% to 1.7% within slaughter-to-chilling continuum, respectively, and that potential EHEC can be confirmed present throughout using culture isolation.IMPORTANCESeven serogroups of Shiga toxin-producing Escherichia coli (STEC) are responsible for most (>75%) cases of severe illnesses caused by STEC and are considered adulterants of beef. However, some STEC outbreaks have been attributed to pork products although the same E. coli are not considered adulterants in pork because little is known of their prevalence along the pork chain. The significance of the work presented here is that it identifies disease causing STEC, enterohemorrhagic E. coli (EHEC), demonstrating that these same organisms are a food safety hazard in pork as well as beef. The results show that most STEC isolated from pork are not likely to cause severe disease in humans and that processes used in pork harvest, such as scalding, offer a significant control point to reduce contamination. The results will assist the pork processing industry and regulatory agencies to optimize interventions to improve the safety of pork products.


2007 ◽  
Vol 70 (4) ◽  
pp. 841-850 ◽  
Author(s):  
JOSH R. BRANEN ◽  
MARTHA J. HASS ◽  
ERIN R. DOUTHIT ◽  
WUSI C. MAKI ◽  
A. LARRY BRANEN

Enzymatic bio-nanotransduction is a biological detection scheme based on the production of nucleic acid nano-signals (RNA) in response to specific biological recognition events. In this study, we applied an enzymatic bio-nanotransduction system to the detection of important food-related pathogens and a toxin. Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and staphylococcal enterotoxin B (SEB) were chosen because of the implications of these targets to food safety. Primary antibodies to each of the targets were used to functionalize magnetic beads and produce biological recognition elements (antibodies) conjugated to nano-signal–producing DNA templates. Immunomagnetic capture that was followed by in vitro transcription of DNA templates bound to target molecules produced RNA nano-signals specific for every target in the sample. Discrimination of RNA nano-signals with a standard enzyme-linked oligonucleotide fluorescence assay provided a correlation between nano-signal profiles and target concentrations. The estimated limit of detection was 2.4 × 103 CFU/ml for E. coli O157:H7, 1.9 × 104 CFU/ml for S. enterica serovar Typhimurium, and 0.11 ng/ml for SEB with multianalyte detection in buffer. Low levels of one target were also detected in the presence of interference from high levels of the other targets. Finally, targets were detected in milk, and detection was improved for E. coli O157 by heat treatment of the milk.


Author(s):  
Mahbubul Siddiqee ◽  
Rebekah Henry ◽  
Rebecca Coulthard ◽  
Christelle Schang ◽  
Richard Williamson ◽  
...  

Estuarine bank sediments have the potential to support the survival and growth of fecal indicator organisms, including Escherichia coli. However, survival of fecal pathogens in estuarine sediments is not well researched and therefore remains a significant knowledge gap regarding public health risks in estuaries. In this study, simultaneous survival of Escherichia coli and a fecal pathogen, Salmonella enterica serovar Typhimurium, was studied for 21 days in estuarine bank sediment microcosms. Observed growth patterns for both organisms were comparable under four simulated scenarios; for continuous-desiccation, extended-desiccation, periodic-inundation, and continuous-inundation systems, logarithmic decay coefficients were 1.54/day, 1.51/day, 0.14/day, and 0.20/day, respectively, for E. coli, and 1.72/day, 1.64/day, 0.21/day, and 0.24/day for S. Typhimurium. Re-wetting of continuous-desiccated systems resulted in potential re-growth, suggesting survival under moisture-limited conditions. Key findings from this study include: (i) Bank sediments can potentially support human pathogens (S. Typhimurium), (ii) inundation levels influence the survival of fecal bacteria in estuarine bank sediments, and (iii) comparable survival rates of S. Typhimurium and E. coli implies the latter could be a reliable fecal indicator in urban estuaries. The results from this study will help select suitable monitoring and management strategies for safer recreational activities in urban estuaries.


2014 ◽  
Vol 77 (1) ◽  
pp. 100-105 ◽  
Author(s):  
MUHSIN AYDIN ◽  
GENE P. D. HERZIG ◽  
KWANG CHEOL JEONG ◽  
SAMANTHA DUNIGAN ◽  
PARTH SHAH ◽  
...  

Escherichia coli O157:H7 is a major foodborne pathogen that has posed serious problems for food safety and public health. Recent outbreaks and recalls associated with various foods contaminated by E. coli O157:H7 clearly indicate its deleterious effect on food safety. A rapid and sensitive detection assay is needed for this harmful organism to prevent foodborne illnesses and control outbreaks in a timely manner. We developed a magnetic bead–based immunoassay for detection of E. coli O157:H7 (the most well-known Shiga toxigenic E. coli strain) with a 96-well microplate as an assay platform. Immunomagnetic separation (IMS) and tyramide signal amplification were coupled to the assay to increase its sensitivity and specificity. This immunoassay was able to detect E. coli O157:H7 in pure culture with a detection limit of 50 CFU/ml in less than 3 h without an enrichment step. The detection limit was decreased 10-fold to 5 CFU/ml with addition of a 3-h enrichment step. When this assay was tested with other nontarget foodborne pathogens and common enteric bacteria, no cross-reactivity was found. When tested with artificially contaminated ground beef and milk samples, the assay sensitivity decreased two- to fivefold, with detection limits of 250 and 100 CFU/ml, respectively, probably because of the food matrix effect. The assay results also were compared with those of a sandwich-type enzyme-linked immunosorbent assay (ELISA) and an ELISA coupled with IMS; the developed assay was 25 times and 4 times more sensitive than the standard ELISA and the IMS-ELISA, respectively. Tyramide signal amplification combined with IMS can improve sensitivity and specificity for detection of E. coli O157:H7. The developed assay could be easily adapted for other foodborne pathogens and will contribute to improved food safety and public health.


2013 ◽  
Vol 76 (9) ◽  
pp. 1621-1625 ◽  
Author(s):  
CARLOS A. GÓMEZ-ALDAPA ◽  
M. del REFUGIO TORRES-VITELA ◽  
OTILIO A. ACEVEDO-SANDOVAL ◽  
ESMERALDA RANGEL-VARGAS ◽  
ANGÉLICA VILLARRUEL-LÓPEZ ◽  
...  

Diarrheagenic Escherichia coli pathotypes (DEP) are important foodborne pathogens in various countries, including Mexico. However, no data exist on the presence of DEP on fresh tomatoes (Solanum lycopericum) from Mexico. The frequency of fecal coliforms (FC), E. coli, and DEP were determined for two tomato varieties. One hundred samples of a saladette tomato variety and 100 samples of a red round tomato variety were collected from public markets in Pachuca, Mexico. Each tomato sample consisted of four whole tomatoes. For the 100 saladette samples, coliform bacterial, FC, E. coli, and DEP were identified in 100, 70, 60, and 10% of samples, respectively. For the 100 red round samples, coliform bacterial, FC, E. coli, and DEP were identified in 100, 75, 65, and 11% of samples, respectively. Identified DEP included Shiga toxin–producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). STEC were isolated from 6% of saladette samples and 5% of red round samples. ETEC were isolated from 3% of saladette samples and 4% of red round samples. EPEC were isolated from 2% of saladette samples and 3% of red round samples, and EIEC were isolated from 1% of saladette samples. Both STEC and ETEC were identified in two saladette samples and 1 red round sample. E. coli O157:H7 was not detected in any STEC-positive samples.


Sign in / Sign up

Export Citation Format

Share Document