scholarly journals A Strategic Forest Management Model for Optimizing Timber Yield and Carbon Sequestration

2020 ◽  
Author(s):  
Marc-André Carle ◽  
Sophie D’Amours ◽  
Riadh Azouzi ◽  
Mikael Rönnqvist

Abstract Strategic forest management planning models designed to maintain existing carbon stocks and maximize capacity for future sequestration can help identify underused opportunities to increase carbon stocks without diminishing other forest products. This study proposed a carbon stock unit that allows summing up the stocks in the different forest pools even if the decomposition far exceeds the planning horizon. This unit is used to integrate the methods and algorithms from the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) model into a wood supply model. The resulting model could be used to predict changes in carbon stocks, transfers between carbon pools, and greenhouse gas emissions that would result from every forest management activity. We tailored this model to meet different strategies: maximizing carbon storage in the forest, maximizing high-sustained timber yield, and achieving the dual objectives of yield and carbon storage. A range of management scenarios were simulated using the data of a 485,000 hectares mixed-wood forest in Quebec, Canada. Our results demonstrate that, with the reduction in the harvest rates, the increase in the ecosystem carbon storage is insufficient to offset the carbon losses associated with the increase in the harvest rates. Study Implications In this article, we adopt the perspective of forest managers who contend that removing lumber from the forest can be achieved in a responsible way or in a way that does not affect the carbon stocks in the forest in the long term. We propose a model that integrates methods and algorithms from the CBM-CFS3 model to simulate carbon dynamics of aboveground and belowground biomass and dead organic matter, including soils. The model can be used to predict carbon storage potential within a forest region assuming a given management strategy. We used data of a large forest area to develop a number of sophisticated scenarios of strategic forest planning. Our results are consistent with the forest managers’ contentions. When carbon was maximized regardless of volume, the increase in the ecosystem carbon storage was insufficient to offset the carbon losses associated with the reduction in the harvest rates.

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 342 ◽  
Author(s):  
Bin Yang ◽  
Wenhui Zhang ◽  
Yanlei Lu ◽  
Weiwei Zhang ◽  
Yanan Wang

Research Highlights: This study comprehensively revealed the carbon sequestration characteristics of secondary forests in the central Loess Plateau during vegetation succession. Background and Objectives: The secondary succession of Loess Plateau forests is of great significance in global climate change, but their carbon storage dynamics are poorly understood. The study objectives were to clarify the pattern of changes and contribution level of carbon stocks in various components of ecosystem during succession. Materials and Methods: We selected 18 plots for Pinus tabuliformis Carr. forest at the early stage of succession, 19 for pine-broadleaved mixed forest at the middle stage, and 12 for Quercus-broadleaved mixed forest at the climax stage to determine the tree, shrub, herb, fine root, litter, coarse wood debris (CWD), and soil carbon stocks. Results: Ecosystem carbon stocks increased from 160.73 to 231.14 Mg·ha−1 with the succession stages. Vegetation (including tree, shrub and herb) and soil were the two largest carbon pools, and carbon was mainly sequestrated in tree biomass and shallow soil (0–50 cm). In the early stage, soil contributed more carbon stocks to the ecosystem than vegetation, but with succession, the soil contribution decreased while vegetation contribution increased, finally reaching a balance (46.78% each) at the climax stage. Fine root, litter, and CWD contributed little (average 6.59%) to ecosystem carbon stocks and were mainly involved in the turnover of vegetation biomass to soil carbon. Conclusions: Our results provide direct evidence for carbon sequestration of secondary forests on the Loess Plateau. The dynamic results of carbon storage provide an important basis for forest restoration management under climate change.


2021 ◽  
Vol 97 (02) ◽  
pp. 168-178
Author(s):  
Michael T. Ter-Mikaelian ◽  
Stephen J. Colombo ◽  
Jiaxin Chen

We used models to project forest carbon stocks for a series of harvesting scenarios for 29 boreal forest management units totalling 23.3 million ha in Ontario, Canada. Scenarios evaluated for 2020 to 2050 ranged from a no harvesting option to annual harvesting of 2% of the total merchantable volume present in 2020. For each scenario, we estimated the following carbon quantities: (a) forest ecosystem carbon stocks, (b) sum of carbon stocks in forest ecosystem and harvested wood products (HWP) minus emissions associated with HWP production and decomposition, and (c) net greenhouse gas (GHG) effects of harvesting estimated as (b) combined with emissions avoided by substituting HWP for non-wood materials. The average of each carbon quantity for 2020 to 2050 was linearly dependent on the annual harvest volume. The developed relationships were used to estimate harvest volumes for which the three carbon quantities would equal equilibrium forest ecosystem carbon stocks for a pre-suppression natural disturbance cycle. These estimates indicate the range of harvest volumes for which resulting carbon stocks would equal or exceed those in an unmanaged forest. Also discussed are possible criteria for determining annual harvest volume.


2013 ◽  
Vol 308 ◽  
pp. 178-187 ◽  
Author(s):  
John B. Bradford ◽  
Nicholas R. Jensen ◽  
Grant M. Domke ◽  
Anthony W. D’Amato

2021 ◽  
pp. 1-11
Author(s):  
Michael T. Ter-Mikaelian ◽  
Stephen J. Colombo ◽  
Jiaxin Chen

We used models to project forest carbon stocks for a series of harvesting scenarios for 29 boreal forest management units totalling 23.3 million ha in Ontario, Canada. Scenarios evaluated for 2020 to 2050 ranged from a no harvesting option to annual harvesting of 2% of the total merchantable volume present in 2020. For each scenario, we estimated the following carbon quantities: (a) forest ecosystem carbon stocks, (b) sum of carbon stocks in forest ecosystem and harvested wood products (HWP) minus emissions associated with HWP production and decomposition, and (c) net greenhouse gas (GHG) effects of harvesting estimated as (b) combined with emissions avoided by substituting HWP for non-wood materials. The average of each carbon quantity for 2020 to 2050 was linearly dependent on the annual harvest volume. The developed relationships were used to estimate harvest volumes for which the three carbon quantities would equal equilibrium forest ecosystem carbon stocks for a pre-suppression natural disturbance cycle. These estimates indicate the range of harvest volumes for which resulting carbon stocks would equal or exceed those in an unmanaged forest. Also discussed are possible criteria for determining annual harvest volume.


2004 ◽  
Vol 80 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Robert G D'Eon ◽  
Daryll Hebert ◽  
Stephen L Viszlai

Riverside Forest Products (Kelowna, British Columbia) has embraced a sustainable forest management approach for the management of one its forest tenures—Tree Farm License 49. This document discusses the rationale behind many of the concepts within this approach in the context of current ecological theory. We focus specifically on the following concepts: (1) forest retention, (2) ecosystem representation, (3) ecological contributions from unharvested forests, (4) zoning and the TRIAD approach, (5) stand-level habitat elements and landscape-level features, and (6) ecological indicators. This document provides an example of the application of current ecological theory within a commercial forestry operation in Canada and is thus broadly applicable to foresters, forest managers, and researchers in most jurisdictions. Key words: British Columbia, criteria and indicators, ecological representation, forest retention, sustainable forest management, Riverside Forest Products, TRIAD


2016 ◽  
Vol 144 ◽  
pp. 72-87 ◽  
Author(s):  
Francesca Bottalico ◽  
Lucia Pesola ◽  
Matteo Vizzarri ◽  
Leonardo Antonello ◽  
Anna Barbati ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 528 ◽  
Author(s):  
Jingye Li ◽  
Jian Gong ◽  
Jean-Michel Guldmann ◽  
Shicheng Li ◽  
Jie Zhu

Land use/cover change (LUCC) has an important impact on the terrestrial carbon cycle. The spatial distribution of regional carbon reserves can provide the scientific basis for the management of ecosystem carbon storage and the formulation of ecological and environmental policies. This paper proposes a method combining the CA-based FLUS model and the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model to assess the temporal and spatial changes in ecosystem carbon storage due to land-use changes over 1990–2015 in the Qinghai Lake Basin (QLB). Furthermore, future ecosystem carbon storage is simulated and evaluated over 2020–2030 under three scenarios of natural growth (NG), cropland protection (CP), and ecological protection (EP). The long-term spatial variations in carbon storage in the QLB are discussed. The results show that: (1) Carbon storage in the QLB decreased at first (1990–2000) and increased later (2000–2010), with total carbon storage increasing by 1.60 Tg C (Teragram: a unit of mass equal to 1012 g). From 2010 to 2015, carbon storage displayed a downward trend, with a sharp decrease in wetlands and croplands as the main cause; (2) Under the NG scenario, carbon reserves decrease by 0.69 Tg C over 2020–2030. These reserves increase significantly by 6.77 Tg C and 7.54 Tg C under the CP and EP scenarios, respectively, thus promoting the benign development of the regional ecological environment. This study improves our understanding on the impact of land-use change on carbon storage for the QLB in the northeastern Qinghai–Tibetan Plateau (QTP).


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 990
Author(s):  
Casey A. Lott ◽  
Michael E. Akresh ◽  
Bridgett E. Costanzo ◽  
Anthony W. D’Amato ◽  
Shengwu Duan ◽  
...  

Forest management planning requires the specification of measurable objectives as desired future conditions at spatial extents ranging from stands to landscapes and temporal extents ranging from a single growing season to several centuries. Effective implementation of forest management requires understanding current conditions and constraints well enough to apply the appropriate silvicultural strategies to produce desired future conditions, often for multiple objectives, at varying spatial and temporal extents. We administered an online survey to forest managers in the eastern US to better understand how wildlife scientists could best provide information to help meet wildlife-related habitat objectives. We then examined more than 1000 review papers on bird–vegetation relationships in the eastern US compiled during a systematic review of the primary literature to see how well this evidence-base meets the information needs of forest managers. We identified two main areas where wildlife scientists could increase the relevance and applicability of their research. First, forest managers want descriptions of wildlife species–vegetation relationships using the operational metrics of forest management (forest type, tree species composition, basal area, tree density, stocking rates, etc.) summarized at the operational spatial units of forest management (stands, compartments, and forests). Second, forest managers want information about how to provide wildlife habitats for many different species with varied habitat needs across temporal extents related to the ecological processes of succession after harvest or natural disturbance (1–2 decades) or even longer periods of stand development. We provide examples of review papers that meet these information needs of forest managers and topic-specific bibliographies of additional review papers that may contain actionable information for foresters who wish to meet wildlife management objectives. We suggest that wildlife scientists become more familiar with the extensive grey literature on forest bird–vegetation relationships and forest management that is available in natural resource management agency reports. We also suggest that wildlife scientists could reconsider everything from the questions they ask, the metrics they report on, and the way they allocate samples in time and space, to provide more relevant and actionable information to forest managers.


Sign in / Sign up

Export Citation Format

Share Document