Atmospheric Warming-Associated Phenological Earliness Does Not Increase the Length of Growing Season in Himalayan Trees

2021 ◽  
Author(s):  
G C S Negi ◽  
Pradeep Singh ◽  
S P Singh

Abstract We present phenological data for two time periods (1985–1987 and 2014–2016) on major tree species (Shorea robusta, Pinus roxburghii, Myrica esculenta, Quercus leucotrichophora, Rhododendron arboreum, Quercus floribunda, and Machilus duthiei) occurring along an altitudinal gradient of 300–2,200 m asl of Himalayan forests (a data-deficient region identified by the IPCC, 2007), and show that bud break and leafing in trees has advanced at 0.20 days/year, which is associated with a significant (P < 0.001) increase in atmospheric temperature (0.038°C/year) over the years in the study area. Also, the leaf drop period has advanced correspondingly (0.40 days/year); hence, the length of season (LOS) did not increase in these trees. This finding is contrary to the report of increase in LOS due to climatic warming from temperate latitudes of the world and satellite-based studies in Himalayan region. Arguably, phenomena such as bud break and leafing may not be captured by remote sensing, which is critical for determining the impact of climate change on the forest vegetation of the eco-sensitive Himalayan region. We suggest that this phenological earliness may alter forest structure and functioning and associated ecosystem services of these forests in the long run. Study Implications: This study suggests that bud break and leafing in trees has advanced, an advancement that is associated with the significant increase in atmospheric temperature over the years in the study area. However, the leaf drop period has advanced correspondingly; hence, the length of season of trees in the study area did not increase. Nonetheless, the earliness in the leafing and leaf drop have potential implications on forest ecosystem structure and functioning, such as photosynthesis, carbon assimilation, increased asynchrony in plant-pollinators and animal interactions, reproduction success, and herbivory that require further detailed investigation. Warming may also advance seed maturation and desiccation of seeds that may disrupt the synchrony between monsoon and tree seed germination, forest regeneration, and ensuing ecosystem services. Generalizations on a regional scale on the impact of climate change on annual patterns of growth of forests that are based on remote-sensing studies could mask the impact of the premonsoon period, when bud break and leafing take place. These impacts may not be captured by remote sensing; impacts which, in this study, we have found to be critical.

2021 ◽  
Vol 13 (10) ◽  
pp. 2014
Author(s):  
Celina Aznarez ◽  
Patricia Jimeno-Sáez ◽  
Adrián López-Ballesteros ◽  
Juan Pablo Pacheco ◽  
Javier Senent-Aparicio

Assessing how climate change will affect hydrological ecosystem services (HES) provision is necessary for long-term planning and requires local comprehensive climate information. In this study, we used SWAT to evaluate the impacts on four HES, natural hazard protection, erosion control regulation and water supply and flow regulation for the Laguna del Sauce catchment in Uruguay. We used downscaled CMIP-5 global climate models for Representative Concentration Pathways (RCP) 2.6, 4.5 and 8.5 projections. We calibrated and validated our SWAT model for the periods 2005–2009 and 2010–2013 based on remote sensed ET data. Monthly NSE and R2 values for calibration and validation were 0.74, 0.64 and 0.79, 0.84, respectively. Our results suggest that climate change will likely negatively affect the water resources of the Laguna del Sauce catchment, especially in the RCP 8.5 scenario. In all RCP scenarios, the catchment is likely to experience a wetting trend, higher temperatures, seasonality shifts and an increase in extreme precipitation events, particularly in frequency and magnitude. This will likely affect water quality provision through runoff and sediment yield inputs, reducing the erosion control HES and likely aggravating eutrophication. Although the amount of water will increase, changes to the hydrological cycle might jeopardize the stability of freshwater supplies and HES on which many people in the south-eastern region of Uruguay depend. Despite streamflow monitoring capacities need to be enhanced to reduce the uncertainty of model results, our findings provide valuable insights for water resources planning in the study area. Hence, water management and monitoring capacities need to be enhanced to reduce the potential negative climate change impacts on HES. The methodological approach presented here, based on satellite ET data can be replicated and adapted to any other place in the world since we employed open-access software and remote sensing data for all the phases of hydrological modelling and HES provision assessment.


2011 ◽  
Vol 109 (S1) ◽  
pp. 465-484 ◽  
Author(s):  
M. Rebecca Shaw ◽  
Linwood Pendleton ◽  
D. Richard Cameron ◽  
Belinda Morris ◽  
Dominique Bachelet ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Chenchen Shi ◽  
Jinyan Zhan ◽  
Yongwei Yuan ◽  
Feng Wu ◽  
Zhihui Li

Ecosystem services are the benefit human populations derive directly and indirectly from the natural environment. They suffer from both the human intervention, like land use zoning change, and natural intervention, like the climate change. Under the background of climate change, regulation services of ecosystem could be strengthened under proper land use zoning policy to mitigate the climate change. In this paper, a case study was conducted in the middle reaches of the Heihe River Basin to assess the ecosystem services conservation zoning under the change of land use associated with climate variations. The research results show the spatial impact of land use zoning on ecosystem services in the study area which are significant reference for the spatial optimization of land use zoning in preserving the key ecosystem services to mitigate the climate change. The research contributes to the growing literature in finely characterizing the ecosystem services zones altered by land use change to alleviate the impact of climate change, as there is no such systematic ecosystem zoning method before.


2021 ◽  
Vol 13 (24) ◽  
pp. 14025
Author(s):  
Fazlullah Akhtar ◽  
Usman Khalid Awan ◽  
Christian Borgemeister ◽  
Bernhard Tischbein

The Kabul River Basin (KRB) in Afghanistan is densely inhabited and heterogenic. The basin’s water resources are limited, and climate change is anticipated to worsen this problem. Unfortunately, there is a scarcity of data to measure the impacts of climate change on the KRB’s current water resources. The objective of the current study is to introduce a methodology that couples remote sensing and the Soil and Water Assessment Tool (SWAT) for simulating the impact of climate change on the existing water resources of the KRB. Most of the biophysical parameters required for the SWAT model were derived from remote sensing-based algorithms. The SUFI-2 technique was used for calibrating and validating the SWAT model with streamflow data. The stream-gauge stations for monitoring the streamflow are not only sparse, but the streamflow data are also scarce and limited. Therefore, we selected only the stations that are properly being monitored. During the calibration period, the coefficient of determination (R2) and Nash–Sutcliffe Efficiency (NSE) were 0.75–0.86 and 0.62–0.81, respectively. During the validation period (2011–2013), the NSE and R2 values were 0.52–0.73 and 0.65–0.86, respectively. The validated SWAT model was then used to evaluate the potential impacts of climate change on streamflow. Regional Climate Model (RegCM4-4) was used to extract the data for the climate change scenarios (RCP 4.5 and 8.5) from the CORDEX domain. The results show that streamflow in most tributaries of the KRB would decrease by a maximum of 5% and 8.5% under the RCP 4.5 and 8.5 scenarios, respectively. However, streamflow for the Nawabad tributary would increase by 2.4% and 3.3% under the RCP 4.5 and 8.5 scenarios, respectively. To mitigate the impact of climate change on reduced/increased surface water availability, the SWAT model, when combined with remote sensing data, can be an effective tool to support the sustainable management and strategic planning of water resources. Furthermore, the methodological approach used in this study can be applied in any of the data-scarce regions around the world.


2019 ◽  
Vol 26 (2) ◽  
pp. 75-80
Author(s):  
Kuldeep Singh Dogra ◽  
◽  
Sushmita Uniyal ◽  
Kumar Ambrish ◽  
◽  
...  

Indian Western Himalaya has a rich plant diversity/ bio-resources due to the large variations in the altitude (300 to 6000 ms) and climatic conditions from tropical, temperate to alpine. The paper sheds light on the issues and challenges of climate change in the Western Himalaya; its impact on the plant diversity (wild plants, crops, fruits); loss of plant diversity and livelihood of the local communities; impact on the phenology of plant species; possible mitigation strategies to combat the impact of climate change. The Western Himalayan region has a rich diversity of plant diversity or bio resources. These bio resources (wild plants, crops, fruits) have been used by the local communities in the form of traditional medicines and foods from pre-historic periods or since the settlement of human communities in this region. These communities used these bio-resources as a source of income by their cultivation and selling in the markets. They are also involved in the traditional agriculture and horticulture practices and for that dependent on the climatic conditions (rate of precipitation, temperature, humidity) throughout the year. Hence stable environment conditions a pre requisite for better production and productivity. But in the last 100 years an increased in the temperature on earth brought large variation in the climate of Himalayan region too. The extreme climatic conditions will make Himalayan ecosystem more fragile, less productive and more prone towards disasters or natural calamities. Long term planning is required to understand the impact of climate change in the Western Himalaya along with some new strategies to mitigate its impact.


2012 ◽  
Vol 110 (3-4) ◽  
pp. 1067-1067 ◽  
Author(s):  
M. Rebecca Shaw ◽  
Linwood Pendleton ◽  
D. Richard Cameron ◽  
Belinda Morris ◽  
Dominique Bachelet ◽  
...  

2013 ◽  
Vol 2 ◽  
pp. 98-108 ◽  
Author(s):  
Bharat Raj Subba

The questionnaires and interviews were taken randomly with ethnic people, the molluscs consumers of different districts of Tarai regions. Regarding other information about the impact of climate change in the context of Nepal, literature survey was done. Edible molluscs are cheap non-conventional source of protein for huge population of poor ethnic peoples (53 castes living in twenty districts of Tarai in Nepal), from time immemorial. Up to, nearly four and half decades back, there were virgin forests in Tarai region, water sources were in better condition but because of rapid population explosion, encroachment of wetlands and deforestation the water sources began to dry up early in the year. Gradual increase in atmospheric temperature due to imbalanced amount of CO2 and precipitation, is worsening the environment. The climate change is not only destroying the suitable aquatic environment of the molluscs habitats but their foods of plant and animal origins as well. Several changes in water chemistry might have taken place threatening aquatic lives including molluscs. As a result, annual production of mollusc also has decreased. The climate change is enforcing molluscs to change their original habitats and habits. While their production of molluscs is decreasing, demand is increasing due to rapid human population growth. The price of molluscs meat also has increased 100% as compared to one decade back (Bellamya Rs 20-25/kg with shell, Pila without shell Rs 48-60/kg, similarly bivalves (Lamellidens and Parreysia) Rs 20-30/kg with shell whereas Rs 50-60/kg without shell; Brotia Rs 10-12/kg with shell). Local production of Nepal covers hardly 30-40% demand of molluscs. The rest 60% demand is met imported from India. The only solution of the problem is to initiate molluscs culture which will also help conserve water sources and other aquatic organisms as well. DOI: http://dx.doi.org/10.3126/njbs.v2i0.7496 Nepalese Journal of Biosciences 2 : 98-108 (2012)


Sign in / Sign up

Export Citation Format

Share Document