scholarly journals RIL-StEp: epistasis analysis of rice recombinant inbred lines (RILs) reveals candidate interacting genes that control seed hull color and leaf chlorophyll content

Author(s):  
Toshiyuki Sakai ◽  
Akira Abe ◽  
Motoki Shimizu ◽  
Ryohei Terauchi

Abstract Characterizing epistatic gene interactions is fundamental for understanding the genetic architecture of complex traits. However, due to the large number of potential gene combinations, detecting epistatic gene interactions is computationally demanding. A simple, easy-to-perform method for sensitive detection of epistasis is required. Due to their homozygous nature, use of recombinant inbred lines (RILs) excludes the dominance effect of alleles and interactions involving heterozygous genotypes, thereby allowing detection of epistasis in a simple and interpretable model. Here, we present an approach called RIL-StEp (recombinant inbred lines stepwise epistasis detection) to detect epistasis using single nucleotide polymorphisms in the genome. We applied the method to reveal epistasis affecting rice (Oryza sativa) seed hull color and leaf chlorophyll content and successfully identified pairs of genomic regions that presumably control these phenotypes. This method has the potential to improve our understanding of the genetic architecture of various traits of crops and other organisms.

2020 ◽  
Author(s):  
Toshiyuki Sakai ◽  
Akira Abe ◽  
Motoki Shimizu ◽  
Ryohei Terauchi

SummaryStudying epistatic gene interactions is important in understanding genetic architecture of complex traits in organisms. However, due to an enormous number of gene combinations to be analyzed, detection of epistatic gene-gene interactions has been computationally demanding. Here, we show a simple approach RIL-StEp, specialized to Recombinant Inbred Lines (RILs), to study epistasis using single nucleotide polymorphisms (SNPs) information of the genome. We applied the method to reveal epistasis affecting rice seed hull color phenotype, and successfully identified gene pairs that presumably control seed hull color. This method has a potential to enhancing our understanding of genetic architecture of various traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dongdong Li ◽  
Zhiqiang Zhou ◽  
Xiaohuan Lu ◽  
Yong Jiang ◽  
Guoliang Li ◽  
...  

Heterosis contributes a big proportion to hybrid performance in maize, especially for grain yield. It is attractive to explore the underlying genetic architecture of hybrid performance and heterosis. Considering its complexity, different from former mapping method, we developed a series of linear mixed models incorporating multiple polygenic covariance structures to quantify the contribution of each genetic component (additive, dominance, additive-by-additive, additive-by-dominance, and dominance-by-dominance) to hybrid performance and midparent heterosis variation and to identify significant additive and non-additive (dominance and epistatic) quantitative trait loci (QTL). Here, we developed a North Carolina II population by crossing 339 recombinant inbred lines with two elite lines (Chang7-2 and Mo17), resulting in two populations of hybrids signed as Chang7-2 × recombinant inbred lines and Mo17 × recombinant inbred lines, respectively. The results of a path analysis showed that kernel number per row and hundred grain weight contributed the most to the variation of grain yield. The heritability of midparent heterosis for 10 investigated traits ranged from 0.27 to 0.81. For the 10 traits, 21 main (additive and dominance) QTL for hybrid performance and 17 dominance QTL for midparent heterosis were identified in the pooled hybrid populations with two overlapping QTL. Several of the identified QTL showed pleiotropic effects. Significant epistatic QTL were also identified and were shown to play an important role in ear height variation. Genomic selection was used to assess the influence of QTL on prediction accuracy and to explore the strategy of heterosis utilization in maize breeding. Results showed that treating significant single nucleotide polymorphisms as fixed effects in the linear mixed model could improve the prediction accuracy under prediction schemes 2 and 3. In conclusion, the different analyses all substantiated the different genetic architecture of hybrid performance and midparent heterosis in maize. Dominance contributes the highest proportion to heterosis, especially for grain yield, however, epistasis contributes the highest proportion to hybrid performance of grain yield.


2019 ◽  
Author(s):  
Rohan Shah ◽  
B Emma Huang ◽  
Alex Whan ◽  
Marcus Newberry ◽  
Klara Verbyla ◽  
...  

AbstractBackgroundIdentifying the genetic architecture of complex traits requires access to populations with sufficient genetic diversity and recombination. Multi-parent Advanced Generation InterCross (MAGIC) populations are a powerful resource due to their balanced population structure, allelic diversity and enhanced recombination. However, implementing a MAGIC population in complex polyploids such as wheat is not trivial, as wheat harbours many introgressions, inversions and other genetic factors that interfere with linkage mapping.ResultsBy utilising a comprehensive crossing strategy, additional rounds of mixing and novel genotype calling approaches, we developed a bread wheat eight parent MAGIC population made up of more than 3000 fully genotyped recombinant inbred lines derived from 2151 distinct crosses, and achieved a dense genetic map covering the complete genome. Further rounds of inter-crossing led to increased recombination in inbred lines, as expected. The comprehensive and novel approaches taken in the development and analysis of this population provide a platform for genetic discovery in bread wheat. We identify previously unreported structural variation highlighted by segregation distortion, along with the identification of epistatic allelic interactions between specific founders. We demonstrate the ability to conduct high resolution QTL mapping using the number of recombination events as a trait, and identify several significant QTLs explaining greater than 50% of the variance.ConclusionsWe report on a novel and effective resource for genomic and trait exploration in hexaploid wheat, that can be used to detect small genetic effects and epistatic interactions due to the high level of recombination and large number of lines. The interactions and genetic effects identified provide a basis for ongoing research to understand the basis of allelic frequencies across the genome, particularly where economically important loci are involved.


2018 ◽  
Author(s):  
Max R. Bernstein ◽  
Stefan Zdraljevic ◽  
Erik C. Andersen ◽  
Matthew V. Rockman

AbstractRecent work has provided strong empirical support for the classic polygenic model for trait variation. Population-based findings suggest that most regions of genome harbor variation affecting most traits. This view is hard to reconcile with the experience of researchers who define gene functions using mutagenesis, comparing mutants one at a time to the wild type. Here, we use the approach of experimental genetics to show that indeed, most genomic regions carry variants with detectable effects on complex traits. We used high-throughput phenotyping to characterize demography as a multivariate trait in growing populations of Caenorhabditis elegans sensitized by nickel stress. We show that demography under these conditions is genetically complex in a panel of recombinant inbred lines. We then focused on a 1.4-Mb region of the X chromosome. When we compared two near isogenic lines (NILs) that differ only at this region, they were phenotypically indistinguishable. When we used additional NILs to subdivide the region into fifteen intervals, each encompassing ~0.001 of the genome, we found that eleven of intervals have significant effects. These effects are often similar in magnitude to those of genome-wide significant QTLs mapped in the recombinant inbred lines but are antagonized by the effects of variants in adjacent intervals. Contrary to the expectation of small additive effects, our findings point to large-effect variants whose effects are masked by epistasis or linkage disequilibrium between alleles of opposing effect.


2019 ◽  
Vol 79 (01S) ◽  
Author(s):  
M. A. Saleem ◽  
G. K. Naidu ◽  
H. L. Nadaf ◽  
P. S. Tippannavar

Spodoptera litura an important insect pest of groundnut causes yield loss up to 71% in India. Though many effective chemicals are available to control Spodoptera, host plant resistance is the most desirable, economic and eco-friendly strategy. In the present study, groundnut mini core (184), recombinant inbred lines (318) and elite genotypes (44) were studied for their reaction to Spodoptera litura under hot spot location at Dharwad. Heritable component of variation existed for resistance to Spodoptera in groundnut mini core, recombinant inbred lines and elite genotypes indicating scope for selection of Spodoptera resistant genotypes. Only 29 (15%) genotypes belonging to hypogaea, fastigiata and hirsuta botanical varieties under mini core set, 15 transgressive segregants belonging to fastigiata botanical variety among 318 recombinant inbred lines and three genotypes belonging to hypogaea and fastigiata botanical varieties under elite genotypes showed resistance to Spodoptera litura with less than 10% leaf damage. Negative correlation existed between resistance to Spodoptera and days to 50 per cent flowering indicating late maturing nature of resistant genotypes. Eight resistant genotypes (ICG 862, ICG 928, ICG 76, ICG 2777, ICG 5016, ICG 12276, ICG 4412 and ICG 9905) under hypogaea botanical variety also had significantly higher pod yield. These diverse genotypes could serve as potential donors for incorporation of Spodoptera resistance in groundnut.


Sign in / Sign up

Export Citation Format

Share Document