scholarly journals Draft genome assemblies for tree pathogens Phytophthora pseudosyringae and Phytophthora boehmeriae

Author(s):  
Peter Thorpe ◽  
Ramesh R Vetukuri ◽  
Pete E Hedley ◽  
Jenny Morris ◽  
Maximilian A Whisson ◽  
...  

Abstract Species of Phytophthora, plant pathogenic eukaryotic microbes, can cause disease on many tree species. Genome sequencing of species from this genus has helped to determine components of their pathogenicity arsenal. Here we sequenced genomes for two widely distributed species, P. pseudosyringae and P. boehmeriae, yielding genome assemblies of 49 Mb and 40 Mb, respectively. We identified more than 280 candidate disease promoting RXLR effector coding genes for each species, and hundreds of genes encoding candidate plant cell wall degrading carbohydrate active enzymes (CAZymes). These data boost genome sequence representation across the Phytophthora genus, and form resources for further study of Phytophthora pathogenesis.

mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Anthony P. Neumann ◽  
Garret Suen

ABSTRACTMembers of the genusFibrobacterare cellulose-degrading bacteria and common constituents of the gastrointestinal microbiota of herbivores. Although considerable phylogenetic diversity is observed among members of this group, few functional differences explaining the distinct ecological distributions of specific phylotypes have been described. In this study, we sequenced and performed a comparative analysis of whole genomes from 38 novelFibrobacterstrains against the type strains for the two formally describedFibrobacterspeciesF. succinogenesstrain S85 andF. intestinalisstrain NR9. Significant differences in the number of genes encoding carbohydrate-active enzyme families involved in plant cell wall polysaccharide degradation were observed amongFibrobacterphylotypes.F. succinogenesgenomes were consistently enriched in genes encoding carbohydrate-active enzymes compared to those ofF. intestinalisstrains. Moreover, genomes ofF. succinogenesphylotypes that are dominant in the rumen had significantly more genes annotated to major families involved in hemicellulose degradation (e.g., CE6, GH10, and GH43) than did the genomes ofF. succinogenesphylotypes typically observed in the lower gut of large hindgut-fermenting herbivores such as horses. Genes encoding a putative urease were also identified in 12 of theFibrobactergenomes, which were primarily isolated from hindgut-fermenting hosts. Screening for growth on urea as the sole source of nitrogen provided strong evidence that the urease was active in these strains. These results represent the strongest evidence reported to date for specific functional differences contributing to the ecology ofFibrobacterspp. in the herbivore gut.IMPORTANCEThe herbivore gut microbiome is incredibly diverse, and a functional understanding of this diversity is needed to more reliably manipulate this community for specific gain, such as increased production in ruminant livestock. Microbial degraders of plant cell wall polysaccharides in the herbivore gut, particularlyFibrobacterspp., are of fundamental importance to their hosts for digestion of a diet consisting primarily of recalcitrant plant fibers. Considerable phylogenetic diversity exists among members of the genusFibrobacter, but much of this diversity remains cryptic. Here, we used comparative genomics, applied to a diverse collection of recently isolatedFibrobacterstrains, to identify a robust association between carbohydrate-active enzyme gene content and theFibrobacterphylogeny. Our results provide the strongest evidence reported to date for functional differences amongFibrobacterphylotypes associated with either the rumen or the hindgut and emphasize the general significance of carbohydrate-active enzymes in the evolution of fiber-degrading bacteria.


Author(s):  
Marco Alexandre Guerreiro ◽  
Steven Ahrendt ◽  
Jasmyn Pangilinan ◽  
Cindy Chen ◽  
Mi Yan ◽  
...  

Abstract The Tremellomycetes are a species-rich group within the basidiomycete fungi; however, most analyses of this group to date have focused on pathogenic Cryptococcus species within the order Tremellales. Recent genome-assisted studies of other Tremellomycetes have identified interesting features with respect to biotechnological applications as well as the evolution of genes involved in mating and sexual development. Here, we report genome sequences of two strains of Filobasidium floriforme, a species from the order Filobasidiales, which branches basally to the Tremellales, Trichosporonales and Holtermanniales. The assembled genomes of strains CBS6241 and CBS6242 are 27.4 Mb and 26.4 Mb in size, respectively, with 8314 and 7695 predicted protein-coding genes. Overall sequence identity at nucleic acid level between the strains is 97%. Among the predicted genes are pheromone precursor and pheromone receptor genes as well as two genes encoding homedomain (HD) transcription factors, which are predicted to be part of the mating type (MAT) locus. Sequence analysis indicates that CBS6241 and CBS6242 carry different alleles for both the pheromone/receptor genes as well as the HD transcription factors. Orthology inference identified 1482 orthogroups exclusively found in F. floriforme, some of which were involved in carbohydrate transport and metabolism. Subsequent CAZyme repertoire characterization identified 267 and 247 enzymes for CBS6241 and CBS6242, respectively, the second highest number of CAZymes among the analyzed Tremellomycete species. Additionally, F. floriforme contains five CAZymes absent in other species and several plant-cell-wall degrading CAZymes with the highest copy number in Tremellomycota, indicating the biotechnological potential of this species.


2020 ◽  
Vol 117 (11) ◽  
pp. 6003-6013 ◽  
Author(s):  
Vincent W. Wu ◽  
Nils Thieme ◽  
Lori B. Huberman ◽  
Axel Dietschmann ◽  
David J. Kowbel ◽  
...  

Filamentous fungi, such asNeurospora crassa, are very efficient in deconstructing plant biomass by the secretion of an arsenal of plant cell wall-degrading enzymes, by remodeling metabolism to accommodate production of secreted enzymes, and by enabling transport and intracellular utilization of plant biomass components. Although a number of enzymes and transcriptional regulators involved in plant biomass utilization have been identified, how filamentous fungi sense and integrate nutritional information encoded in the plant cell wall into a regulatory hierarchy for optimal utilization of complex carbon sources is not understood. Here, we performed transcriptional profiling ofN. crassaon 40 different carbon sources, including plant biomass, to provide data on how fungi sense simple to complex carbohydrates. From these data, we identified regulatory factors inN. crassaand characterized one (PDR-2) associated with pectin utilization and one with pectin/hemicellulose utilization (ARA-1). Using in vitro DNA affinity purification sequencing (DAP-seq), we identified direct targets of transcription factors involved in regulating genes encoding plant cell wall-degrading enzymes. In particular, our data clarified the role of the transcription factor VIB-1 in the regulation of genes encoding plant cell wall-degrading enzymes and nutrient scavenging and revealed a major role of the carbon catabolite repressor CRE-1 in regulating the expression of major facilitator transporter genes. These data contribute to a more complete understanding of cross talk between transcription factors and their target genes, which are involved in regulating nutrient sensing and plant biomass utilization on a global level.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
James P. Craig ◽  
Samuel T. Coradetti ◽  
Trevor L. Starr ◽  
N. Louise Glass

ABSTRACTFungal deconstruction of the plant cell requires a complex orchestration of a wide array of intracellular and extracellular enzymes. InNeurospora crassa, CLR-1, CLR-2, and XLR-1 have been identified as key transcription factors regulating plant cell wall degradation in response to soluble sugars. The XLR-1 regulon was defined using a constitutively active mutant allele, resulting in hemicellulase gene expression and secretion under noninducing conditions. To define genes directly regulated by CLR-1, CLR-2, and XLR-1, we performed chromatin immunoprecipitation and next-generation sequencing (ChIPseq) on epitope-tagged constructs of these three transcription factors. WhenN. crassais exposed to plant cell wall material, CLR-1, CLR-2, and XLR-1 individually bind to the promoters of the most strongly induced genes in their respective regulons. These include promoters of genes encoding cellulases for CLR-1 and CLR-2 (CLR-1/CLR-2) and promoters of genes encoding hemicellulases for XLR-1. CLR-1 bound to its regulon under noninducing conditions; however, this binding alone did not translate into gene expression and enzyme secretion. Motif analysis of the bound genes revealed conserved DNA binding motifs, with the CLR-2 motif matching that of its closest paralog inSaccharomyces cerevisiae, Gal4p. Coimmunoprecipitation studies showed that CLR-1 and CLR-2 act in a homocomplex but not as a CLR-1/CLR-2 heterocomplex.IMPORTANCEUnderstanding fungal regulation of complex plant cell wall deconstruction pathways in response to multiple environmental signals via interconnected transcriptional circuits provides insight into fungus/plant interactions and eukaryotic nutrient sensing. Coordinated optimization of these regulatory networks is likely required for optimal microbial enzyme production.


PLoS Genetics ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. e1007322 ◽  
Author(s):  
Irina S. Druzhinina ◽  
Komal Chenthamara ◽  
Jian Zhang ◽  
Lea Atanasova ◽  
Dongqing Yang ◽  
...  

2007 ◽  
Vol 189 (17) ◽  
pp. 6260-6265 ◽  
Author(s):  
Shaolin Chen ◽  
David B. Wilson

ABSTRACT Thermobifida fusca secretes proteins that carry out plant cell wall degradation. Using two-dimensional electrophoresis, the extracellular proteome of T. fusca grown on cellobiose was compared to that of cells grown on glucose. Extracellular proteins, the expression of which is induced by cellobiose, mainly are cellulases and cellulose-binding proteins. Other major extracellular proteins induced by cellobiose include a xylanase (Xyl10A) and two unknown proteins, the C-terminal regions of which are homologous to a lytic transglycosylase goose egg white lysozyme domain and an NLPC_P60 domain (which defines a family of cell wall peptidases), respectively. Transcriptional analysis of genes encoding cellobiose-induced proteins suggests that their expression is controlled at the transcriptional level and that their expression also is induced by cellulose. Some other major extracellular proteins produced by T. fusca grown on both cellobiose and glucose include Lam81A and three unknown proteins that are homologous to aminopeptidases and xylanases or that contain a putative NLPC_P60 domain.


2013 ◽  
Vol 280 (1763) ◽  
pp. 20131021 ◽  
Author(s):  
Yannick Pauchet ◽  
David G. Heckel

The primary plant cell wall comprises the most abundant polysaccharides on the Earth and represents a rich source of energy for organisms which have evolved the ability to digest them. Enzymes able to degrade plant cell wall polysaccharides are widely distributed in micro-organisms but are generally absent in animals, although their presence in insects, especially phytophagous beetles from the superfamilies Chrysomeloidea and Curculionoidea, has recently begun to be appreciated. The observed patchy distribution of endogenous genes encoding these enzymes in animals has raised questions about their evolutionary origins. Recent evidence suggests that endogenous plant cell wall degrading enzymes-encoding genes have been acquired by animals through a mechanism known as horizontal gene transfer (HGT). HGT describes how genetic material is moved by means other than vertical inheritance from a parent to an offspring. Here, we provide evidence that the mustard leaf beetle, Phaedon cochleariae , possesses in its genome genes encoding active xylanases from the glycoside hydrolase family 11 (GH11). We also provide evidence that these genes were originally acquired by P. cochleariae from a species of gammaproteobacteria through HGT. This represents the first example of the presence of genes from the GH11 family in animals.


Sign in / Sign up

Export Citation Format

Share Document