scholarly journals Origin and Evolutionary Dynamics of the miR2119 and ADH1 Regulatory Module in Legumes

2020 ◽  
Vol 12 (12) ◽  
pp. 2355-2369
Author(s):  
Carlos De la Rosa ◽  
Luis Lozano ◽  
Santiago Castillo-Ramírez ◽  
Alejandra A Covarrubias ◽  
José L Reyes

Abstract MicroRNAs are important regulators of gene expression in eukaryotes. Previously, we reported that in Phaseolus vulgaris, the precursor for miR2119 is located in the same gene as miR398a, conceiving a dicistronic MIR gene. Both miRNA precursors are transcribed and processed from a single transcript resulting in two mature microRNAs that regulate the mRNAs encoding ALCOHOL DEHYDROGENASE 1 (ADH1) and COPPER-ZINC SUPEROXIDE DISMUTASE 1 (CSD1). Genes for miR398 are distributed throughout the spermatophytes; however, miR2119 is only found in Leguminosae species, indicating its recent emergence. Here, we used public databases to explore the presence of the miR2119 sequence in several plant species. We found that miR2119 is present only in specific clades within the Papilionoideae subfamily, including important crops used for human consumption and forage. Within this subfamily, MIR2119 and MIR398a are found together as a single gene in the genomes of the Millettioids and Hologalegina. In contrast, in the Dalbergioids MIR2119 is located in a different locus from MIR398a, suggesting this as the ancestral genomic organization. To our knowledge, this is a unique example where two separate MIRNA genes have merged to generate a single polycistronic gene. Phylogenetic analysis of ADH1 gene sequences in the Papilionoideae subfamily revealed duplication events resulting in up to four ADH1 genes in certain species. Notably, the presence of MIR2119 correlates with the conservation of target sites in particular ADH1 genes in each clade. Our results suggest that post-transcriptional regulation of ADH1 genes by miR2119 has contributed to shaping the expansion and divergence of this gene family in the Papilionoideae. Future experimental work on ADH1 regulation by miR2119 in more legume species will help to further understand the evolutionary history of the ADH1 gene family and the relevance of miRNA regulation in this process.

Cells ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 560 ◽  
Author(s):  
Weilong Kong ◽  
Baoguang An ◽  
Yue Zhang ◽  
Jing Yang ◽  
Shuangmiao Li ◽  
...  

Sugar transporter proteins (STPs), such as H+/sugar symporters, play essential roles in plants’ sugar transport, growth, and development, and possess an important potential to enhance plants’ performance of multiple agronomic traits, especially crop yield and stress tolerance. However, the evolutionary dynamics of this important gene family in Gramineae crops are still not well-documented and functional differentiation of rice STP genes remain unclear. To address this gap, we conducted a comparative genomic study of STP genes in seven representative Gramineae crops, which are Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Setaria italica (Si), Sorghum bicolor (Sb), Zea mays (Zm), Oryza rufipogon (Or), and Oryza sativa ssp. japonica (Os). In this case, a total of 177 STP genes were identified and grouped into four clades. Of four clades, the Clade I, Clade III, and Clade IV showed an observable number expansion compared to Clade II. Our results of identified duplication events and divergence time of duplicate gene pairs indicated that tandem, Whole genome duplication (WGD)/segmental duplication events play crucial roles in the STP gene family expansion of some Gramineae crops (expect for Hv) during a long-term evolutionary process. However, expansion mechanisms of the STP gene family among the tested species were different. Further selective force studies revealed that the STP gene family in Gramineae crops was under purifying selective forces and different clades and orthologous groups with different selective forces. Furthermore, expression analysis showed that rice STP genes play important roles not only in flower organs development but also under various abiotic stresses (cold, high-temperature, and submergence stresses), blast infection, and wounding. The current study highlighted the expansion and evolutionary patterns of the STP gene family in Gramineae genomes and provided some important messages for the future functional analysis of Gramineae crop STP genes.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1190
Author(s):  
Yuqi Huang ◽  
Minghao Sun ◽  
Lenan Zhuang ◽  
Jin He

Androgen-inducible genes (AIGs), which can be regulated by androgen level, constitute a group of genes characterized by the presence of the AIG/FAR-17a domain in its protein sequence. Previous studies on AIGs demonstrated that one member of the gene family, AIG1, is involved in many biological processes in cancer cell lines and that ADTRP is associated with cardiovascular diseases. It has been shown that the numbers of AIG paralogs in humans, mice, and zebrafish are 2, 2, and 3, respectively, indicating possible gene duplication events during vertebrate evolution. Therefore, classifying subgroups of AIGs and identifying the homologs of each AIG member are important to characterize this novel gene family further. In this study, vertebrate AIGs were phylogenetically grouped into three major clades, ADTRP, AIG1, and AIG-L, with AIG-L also evident in an outgroup consisting of invertebrsate species. In this case, AIG-L, as the ancestral AIG, gave rise to ADTRP and AIG1 after two rounds of whole-genome duplications during vertebrate evolution. Then, the AIG family, which was exposed to purifying forces during evolution, lost or gained some of its members in some species. For example, in eutherians, Neognathae, and Percomorphaceae, AIG-L was lost; in contrast, Salmonidae and Cyprinidae acquired additional AIG copies. In conclusion, this study provides a comprehensive molecular phylogenetic analysis of vertebrate AIGs, which can be employed for future functional characterization of AIGs.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lingling DOU ◽  
Limin LV ◽  
Yangyang KANG ◽  
Ruijie TIAN ◽  
Deqing HUANG ◽  
...  

Abstract Background Calmodulin (CaM) is one of the most important Ca2+ signaling receptors because it regulates diverse physiological and biochemical reactions in plants. CaM functions by interacting with CaM-binding proteins (CaMBPs) to modulate Ca2+ signaling. IQ domain (IQD) proteins are plant-specific CaMBPs that bind to CaM by their specific CaM binding sites. Results In this study, we identified 102 GhIQD genes in the Gossypium hirsutum L. genome. The GhIQD gene family was classified into four clusters (I, II, III, and IV), and we then mapped the GhIQD genes to the G. hirsutum L. chromosomes. Moreover, we found that 100 of the 102 GhIQD genes resulted from segmental duplication events, indicating that segmental duplication is the main force driving GhIQD gene expansion. Gene expression pattern analysis showed that a total of 89 GhIQD genes expressed in the elongation stage and second cell wall biosynthesis stage of the fiber cells, suggesting that GhIQD genes may contribute to fiber cell development in cotton. In addition, we found that 20 selected GhIQD genes were highly expressed in various tissues. Exogenous application of MeJA significantly enhanced the expression levels of GhIQD genes. Conclusions Our study shows that GhIQD genes are involved in fiber cell development in cotton and are also widely induced by MeJA. Thw results provide bases to systematically characterize the evolution and biological functions of GhIQD genes, as well as clues to breed better cotton varieties in the future.


1990 ◽  
Vol 10 (6) ◽  
pp. 2513-2520
Author(s):  
L C Samuelson ◽  
K Wiebauer ◽  
C M Snow ◽  
M H Meisler

We have analyzed the junction regions of inserted elements within the human amylase gene complex. This complex contains five genes which are expressed at high levels either in the pancreas or in the parotid gland. The proximal 5'-flanking regions of these genes contain two inserted elements. A gamma-actin pseudogene is located at a position 200 base pairs upstream of the first coding exon. All of the amylase genes contain this insert. The subsequent insertion of an endogenous retrovirus interrupted the gamma-actin pseudogene within its 3'-untranslated region. Nucleotide sequence analysis of the inserted elements associated with each of the five human amylase genes has revealed a series of molecular events during the recent history of this gene family. The data indicate that the entire gene family was generated during primate evolution from one ancestral gene copy and that the retroviral insertion activated a cryptic promoter.


2022 ◽  
Vol 23 (2) ◽  
pp. 614
Author(s):  
Weiqi Sun ◽  
Mengdi Li ◽  
Jianbo Wang

Brassica napus and its diploid progenitors (B. rapa and B. oleracea) are suitable for studying the problems associated with polyploidization. As an important anti-stress protein, RCI2 proteins widely exist in various tissues of plants, and are crucial to plant growth, development, and stress response. In this study, the RCI2 gene family was comprehensively identified and analyzed, and 9, 9, and 24 RCI2 genes were identified in B. rapa, B. oleracea, and B. napus, respectively. Phylogenetic analysis showed that all of the identified RCI2 genes were divided into two groups, and further divided into three subgroups. Ka/Ks analysis showed that most of the identified RCI2 genes underwent a purifying selection after the duplication events. Moreover, gene structure analysis showed that the structure of RCI2 genes is largely conserved during polyploidization. The promoters of the RCI2 genes in B. napus contained more cis-acting elements, which were mainly involved in plant development and growth, plant hormone response, and stress responses. Thus, B. napus might have potential advantages in some biological aspects. In addition, the changes of RCI2 genes during polyploidization were also discussed from the aspects of gene number, gene structure, gene relative location, and gene expression, which can provide reference for future polyploidization analysis.


2021 ◽  
Vol 9 ◽  
Author(s):  
Abdullah ◽  
Sahar Faraji ◽  
Parviz Heidari ◽  
Péter Poczai

The benzyl alcohol O-acetyl transferase, anthocyanin O-hydroxycinnamoyl transferase, N-hydroxycinnamoyl anthranilate benzoyl transferase, and deacetylvindoline 4-O-acetyltransferase (BAHD) enzymes play a critical role in regulating plant metabolites and affecting cell stability. In the present study, members of the BAHD gene family were recognized in the genome of Theobroma cacao and characterized using various bioinformatics tools. We found 27 non-redundant putative tcBAHD genes in cacao for the first time. Our findings indicate that tcBAHD genes are diverse based on sequence structure, physiochemical properties, and function. When analyzed with BAHDs of Gossypium raimondii and Corchorus capsularis clustered into four main groups. According to phylogenetic analysis, BAHD genes probably evolved drastically after their divergence. The divergence time of duplication events with purifying selection pressure was predicted to range from 1.82 to 15.50 MYA. Pocket analysis revealed that serine amino acid is more common in the binding site than other residuals, reflecting its key role in regulating the activity of tcBAHDs. Furthermore, cis-acting elements related to the responsiveness of stress and hormone, particularly ABA and MeJA, were frequently observed in the promoter region of tcBAHD genes. RNA-seq analysis further illustrated that tcBAHD13 and tcBAHD26 are involved in response to Phytophthora megakarya fungi. In conclusion, it is likely that evolutionary processes, such as duplication events, have caused high diversity in the structure and function of tcBAHD genes.


1990 ◽  
Vol 10 (6) ◽  
pp. 2513-2520 ◽  
Author(s):  
L C Samuelson ◽  
K Wiebauer ◽  
C M Snow ◽  
M H Meisler

We have analyzed the junction regions of inserted elements within the human amylase gene complex. This complex contains five genes which are expressed at high levels either in the pancreas or in the parotid gland. The proximal 5'-flanking regions of these genes contain two inserted elements. A gamma-actin pseudogene is located at a position 200 base pairs upstream of the first coding exon. All of the amylase genes contain this insert. The subsequent insertion of an endogenous retrovirus interrupted the gamma-actin pseudogene within its 3'-untranslated region. Nucleotide sequence analysis of the inserted elements associated with each of the five human amylase genes has revealed a series of molecular events during the recent history of this gene family. The data indicate that the entire gene family was generated during primate evolution from one ancestral gene copy and that the retroviral insertion activated a cryptic promoter.


2001 ◽  
Vol 21 (24) ◽  
pp. 8575-8591 ◽  
Author(s):  
Lei Huang ◽  
Nahid F. Mivechi ◽  
Demetrius Moskophidis

ABSTRACT The murine hsp70 gene family includes the evolutionarily conserved hsp70.1 andhsp70.3 genes, which are the major proteins induced by heat and other stress stimuli.hsp70.1 andhsp70.3 encode identical proteins which protect cells and facilitate their recovery from stress-induced damage. While the hsp70 gene family has been widely studied and the roles of the proteins it encodes as molecular chaperones in a range of human pathologies are appreciated, little is known about the developmental regulation of hsp70.1 andhsp70.3 expression and the in vivo biological function of their products. To directly study the physiological role of these proteins in vivo, we have generated mice deficient in heat shock protein 70 (hsp70) by replacing thehsp70.1 orhsp70.3 gene with an in-frame β-galactosidase sequence. We report here that the expression ofhsp70.1 andhsp70.3 is developmentally regulated at the transcriptional level, and an overlapping expression pattern for both genes is observed during embryo development and in the tissues of adult mice. hsp70.1 −/− orhsp70.3 −/− mice are viable and fertile, with no obvious morphological abnormalities. In late embryonic stage and adult mice, both genes are expressed constitutively in tissues exposed directly to the environment (the epidermis and cornea) and in certain internal organs (the epithelium of the tongue, esophagus, and forestomach, and the kidney, bladder, and hippocampus). Exposure of mice to thermal stress results in the rapid induction and expression of hsp70, especially in organs not constitutively expressing hsp70 (the liver, pancreas, heart, lung, adrenal cortex, and intestine). Despite functional compensation in the single-gene-deficient mice by the intact homologous gene (i.e.,hsp70.3 inhsp70.1 −/− mice and vice versa), a marked reduction in hsp70 protein expression was observed in tissues under both normal and heat stress conditions. At the cellular level, inactivation of hsp70.1 orhsp70.3 resulted in deficient maintenance of acquired thermotolerance and increased sensitivity to heat stress-induced apoptosis. The additive or synergistic effects exhibited by coexpression of both hsp70 genes, and the evolutionary significance of the presence of both hsp70genes, is hence underlined.


Sign in / Sign up

Export Citation Format

Share Document