scholarly journals Transcription profiling of cultured Acropora digitifera adult cells reveals the existence of ancestral genome regulatory modules underlying pluripotency and cell differentiation in cnidaria

Author(s):  
Alejandro Reyes-Bermudez ◽  
Michio Hidaka ◽  
andAlexander Mikheyev

Abstract Due to their pluripotent nature and unlimited cell renewal, stem cells have been proposed as an ideal material for establishing long-term cnidarian cell cultures. However, the lack of unifying principles associated with "stemness" across the phylum complicates stem cells' identification and isolation. Here, we for the first time report gene expression profiles for cultured coral cells, focusing on regulatory gene networks underlying pluripotency and differentiation. Cultures were initiated from Acropora digitifera tip fragments, the fastest growing tissue in Acropora. Overall, in vitro transcription resembled early larvae, over-expressing orthologs of pre-metazoan and Hydra stem cell markers, and transcripts with roles in cell division, migration, and differentiation. Our results suggest the presence of pluripotent cell-types in cultures and indicate the existence of ancestral genome regulatory modules underlying pluripotency and cell differentiation in cnidaria. Cultured cells appear to be synthesizing protein, differentiating, and proliferating.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emilia Solomon ◽  
Katie Davis-Anderson ◽  
Blake Hovde ◽  
Sofiya Micheva-Viteva ◽  
Jennifer Foster Harris ◽  
...  

Abstract Background Human induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. Results Employing RNA-seq technology, we identified and characterized gene regulatory networks triggered by in vitro chemical reprogramming of iPSC into cells with the molecular features of motor neurons (MNs) whose function in vivo is to innervate effector organs. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well-represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. Conclusions Detailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation.



Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3998-3998
Author(s):  
Haruko Shima ◽  
Mika Shino ◽  
Kazutsune Yamagata ◽  
Yukiko Aikawa ◽  
Haruhiko Koseki ◽  
...  

Abstract Abstract 3998 Leukemia and other cancers possess self-renewing stem cells that help maintain cancer. Chromosomal translocations are often involved in the development of human acute myeloid leukemia (AML). The monocytic leukemia zinc finger (MOZ) gene is one of the targets of such translocations. While MOZ is essential for the self-renewal of hematopoietic stem cells, the leukemia associated MOZ-fusion proteins enable the transformation of non–self-renewing myeloid progenitors into leukemia stem cells. Ring1A and Ring1B are catalytic subunits of the polycomb-group repressive complex 1 (PRC1) complex containing Bmi1, and PRC1 complex plays an important role in the regulation of stem cell self-renewal. Using Ring1A-null and Ring1B-conditional deficient mice, we showed that Ring1A/B are required for continuous colony forming ability that is enabled by MOZ-TIF2 and other AML-associated fusions such as MLL-AF10, AML1-ETO, and PML-RARα. Furthermore, MOZ-TIF2- and MLL-AF10-induced AML development in mice were prevented by Ring 1A/B deficiency. To clarify the mechanism of stemness regulation in AML stem cells by PRC1 complex, we compared gene expression profiles of Ring1A/B deleted and non-deleted MOZ-TIF2-induced AML cells. As expected, Ink4a/Arf, a known major target of PRC1 complex involved in stem cell functions, was derepressed by deletion of Ring1A/B. Although deletion of Ink4a/Arf in Ring1A/B deficient AML cells partially restored colony formation ability, it was not substantial to initiate leukemia in recipient mice. Among several target genes which were derepressed by deletion of Ring1A/B, we focused on “Stemness inhibitory factor (SIF)”, known to be required for cell differentiation and morphogenesis in some specific organs. Enforced expression of SIF in MOZ-TIF2-induced AML cells stimulated differentiation of AML progenitors into macrophages. On the other hand, knock-down of SIF blocked cell differentiation block and restored the immortalizing ability of MOZ-TIF2-induced AML progenitors, despite of the absence of Ring1A/B. Collectively, our data demonstrate that Ring 1A/B play crucial roles in the maintenance of AML stem cells through repression of SIF, which strongly promote differentiation of leukemia stem cells. Disclosures: No relevant conflicts of interest to declare.



2021 ◽  
Author(s):  
Jinpu Wei ◽  
Xiuxiu Dong ◽  
Bo Wang ◽  
Yajiang Wu ◽  
Wu Chen ◽  
...  

Mesenchymal stem cells (MSCs) are multipotent adult stem cells and can be isolated from many tissues of the body. Due to their potentials to treat various diseases and be applied in animal breeding, MSCs have been isolated and identified regarding their biological properties. Common hippos (Hippopotamus amphibius) are a vulnerable species and yet the cryopreservation of their genetic materials is scare. In this study, we successfully established two MSC lines (UC-MSCs and AT-MSCs) from the umbilical cord and adipose tissue of a neonatal common hippo and comparatively described their features. Both UC-MSCs and AT-MSCs showed fibroblastoid morphology and could be continuously passaged for over 17 passages without dramatic signs of senescence. The cell cultures had normal chromosome composition, say, 17 pairs of autosomes and 1 pair of X chromosomes. UC-MSCs and AT-MSCs displayed similar gene expression profiles. They were positive for CD45, CD73, CD90 and CD105 and negative for HLA-DR. They demonstrated stemness maintenance by expression of classical stem cell markers. UC-MSCs and AT-MSCs manifested different differentiation potentials into other cell lineages. In summary, these two cell lines demonstrated the essential properties of mesenchymal stem cells and might play a role in the future research.



2021 ◽  
Author(s):  
Lichun Xie ◽  
Guichi Zhou ◽  
Lian Ma ◽  
Feiqiu Wen

Abstract Background: Long non-coding RNAs (lncRNAs) are key regulators of various biological processes and crucial for cell development and differentiation. However, their roles in the differentiation of human umbilical mesenchymal stem cells (HUMSCs) into male germ-like cells remain largely unknown. Method: Here, the expression of lncRNAs and mRNAs in undifferentiated HUMSCs and HUMSCs undergoing differentiation into male germ-like cells was analyzed. RNA-sequencing was performed to profile the expression of non-coding RNAs. We analyzed the total expression of lncRNAs/mRNAs at three time points during HUMSC differentiation [day (D)7, D14, and D21]. Result: Expression profiling revealed 110 lncRNAs, 584 mRNAs, and 21 miRNAs common to the three experimental groups during HUMSC male germ-like cell differentiation. The maximum and minimum total overall lncRNA expression occurred on D14 (638) and D21 (283), respectively. The maximum and minimum numbers of up-regulated mRNAs were observed on D21 (2,398) and D7 (2,106), respectively. The maximum and minimum numbers of down-regulated mRNAs were observed on D14 (3,357) and D21 (202), respectively. The expression level of mRNA ENST00000486554 was up-regulated on D7, D14, and D21 after induction. Pathway analysis identified meiotic signaling pathways and nitrogen metabolism as being associated with the differentiation potential of HUMSC male germ-like cells. Non-coding RNA expression profiles significantly differed in HUMSC male germ-like cell differentiation. One mRNA, ENST00000486554, was crucial for differentiation. Conclusions: Our results provide a systematic perspective on the potential functions of non-coding RNAs and novel insights into the complicated regulatory mechanisms underlying the differentiation of HUMSCs into male germ-like cells.



2020 ◽  
Author(s):  
Emilia Solomon ◽  
Katie Davis-Anderson ◽  
Blake Hovde ◽  
Sofiya N Micheva-Viteva ◽  
Jennifer Foster Harris ◽  
...  

Abstract BackgroundHuman induced pluripotent stem cells (iPSC) have opened new avenues for regenerative medicine. Consequently, iPSC-derived motor neurons have emerged as potentially viable therapies for spinal cord injuries and neurodegenerative disorders including Amyotrophic Lateral Sclerosis. However, direct clinical application of iPSC bears in itself the risk of tumorigenesis and other unforeseeable genetic or epigenetic abnormalities. ResultsEmploying RNA-seq technology, we identified and characterized gene regulatory networks triggered by chemical reprogramming of iPSC into motor neurons. We present meta-transcriptome signatures of 5 cell types: iPSCs, neural stem cells, motor neuron progenitors, early motor neurons, and mature motor neurons. In strict response to the chemical stimuli, along the MN differentiation axis we observed temporal downregulation of tumor growth factor-β signaling pathway and consistent activation of sonic hedgehog, Wnt/β-catenin, and Notch signaling. Together with gene networks defining neuronal differentiation (neurogenin 2, microtubule-associated protein 2, Pax6, and neuropilin-1), we observed steady accumulation of motor neuron-specific regulatory genes, including Islet-1 and homeobox protein HB9. Interestingly, transcriptome profiling of the differentiation process showed that Ca2+ signaling through cAMP and LPC was downregulated during the conversion of the iPSC to neural stem cells and key regulatory gene activity of the pathway remained inhibited until later stages of motor neuron formation. Pathways shaping the neuronal development and function were well -represented in the early motor neuron cells including, neuroactive ligand-receptor interactions, axon guidance, and the cholinergic synapse formation. A notable hallmark of our in vitro motor neuron maturation in monoculture was the activation of genes encoding G-coupled muscarinic acetylcholine receptors and downregulation of the ionotropic nicotinic acetylcholine receptors expression. We observed the formation of functional neuronal networks as spontaneous oscillations in the extracellular action potentials recorded on multi-electrode array chip after 20 days of differentiation. ConclusionsDetailed transcriptome profile of each developmental step from iPSC to motor neuron driven by chemical induction provides the guidelines to novel therapeutic approaches in the re-construction efforts of muscle innervation.





2020 ◽  
Vol 20 (4) ◽  
pp. 318-324 ◽  
Author(s):  
Lei Yang ◽  
Shuoji Zhu ◽  
Yongqing Li ◽  
Jian Zhuang ◽  
Jimei Chen ◽  
...  

Background: Our previous studies have shown that Pygo (Pygopus) in Drosophila plays a critical role in adult heart function that is likely conserved in mammals. However, its role in the differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) into cardiomyocytes remains unknown. Objective: To investigate the role of pygo2 in the differentiation of hUC-MSCs into cardiomyocytes. Methods: Third passage hUC-MSCs were divided into two groups: a p+ group infected with the GV492-pygo2 virus and a p− group infected with the GV492 virus. After infection and 3 or 21 days of incubation, Quantitative real-time PCR (qRT-PCR) was performed to detect pluripotency markers, including OCT-4 and SOX2. Nkx2.5, Gata-4 and cTnT were detected by immunofluorescence at 7, 14 and 21 days post-infection, respectively. Expression of cardiac-related genes—including Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin—were analyzed by qRT-PCR following transfection with the virus at one, two and three weeks. Results : After three days of incubation, there were no significant changes in the expression of the pluripotency stem cell markers OCT-4 and SOX2 in the p+ group hUC-MSCs relative to controls (OCT-4: 1.03 ± 0.096 VS 1, P > 0.05, SOX2: 1.071 ± 0.189 VS 1, P > 0.05); however, after 21 days, significant decreases were observed (OCT-4: 0.164 ± 0.098 VS 1, P < 0.01, SOX2: 0.209 ± 0.109 VS 1, P < 0.001). Seven days following incubation, expression of mesoderm specialisation markers, such as Nkx2.5, Gata-4, MEF2c and KDR, were increased; at 14 days following incubation, expression of cardiac genes, such as Nkx2.5, Gata-4, TNNT2, MEF2c, ISL-1, FOXH1, KDR, αMHC and α-Actin, were significantly upregulated in the p+ group relative to the p− group (P < 0.05). Taken together, these findings suggest that overexpression of pygo2 results in more hUCMSCs gradually differentiating into cardiomyocyte-like cells. Conclusion: We are the first to show that overexpression of pygo2 significantly enhances the expression of cardiac-genic genes, including Nkx2.5 and Gata-4, and promotes the differentiation of hUC-MSCs into cardiomyocyte-like cells.



BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Siyuan Zhang

Abstract Background As one of the novel molecules, circRNA has been identified closely involved in the pathogenesis of many diseases. However, the function of circRNA in acute myeloid leukemia (AML) still remains unknown. Methods In the current study, the RNA expression profiles were obtained from Gene Expression Omnibus (GEO) datasets. The differentially expressed RNAs were identified using R software and the competing endogenous RNA (ceRNA) network was constructed using Cytoscape. Functional and pathway enrichment analyses were performed to identify the candidate circRNA-mediated aberrant signaling pathways. The hub genes were identified by MCODE and CytoHubba plugins of Cytoscape, and then a subnetwork regulatory module was established. Results A total of 27 circRNA-miRNA pairs and 208 miRNA-mRNA pairs, including 12 circRNAs, 24 miRNAs and 112 mRNAs were included in the ceRNA network. Subsequently, a subnetwork, including 4 circRNAs, 5 miRNAs and 6 mRNAs, was established based on related circRNA-miRNA-mRNA regulatory modules. Conclusions In summary, this work analyzes the characteristics of circRNA as competing endogenous RNA in AML pathogenesis, which would provide hints for developing novel prognostic, diagnostic and therapeutic strategy for AML.



Sign in / Sign up

Export Citation Format

Share Document