scholarly journals VIABILITY OF FEMALE GERM-LINE CELLS HOMOZYGOUS FOR ZYGOTIC LETHALS IN DROSOPHILA MELANOGASTER

Genetics ◽  
1983 ◽  
Vol 103 (2) ◽  
pp. 235-247
Author(s):  
Antonio Garcia-Bellido ◽  
Leonard G Robbins

ABSTRACT We have analyzed the viability of different types of X chromosomes in homozygous clones of female germ cells. The chromosomes carried viable mutations, single-cistron zygotic-lethal and semi-lethal mutations, or small (about six chromosome band) deletions. Homozygous germ-line clones were produced by recombination in females heterozygous for an X-linked, dominant, agametic female sterile. All the zygotic-viable mutants are also viable in germ cells. Of 16 deletions tested (uncovering a total of 93 bands) only 2 (of 4 and 5 bands) are germ-cell viable. Mutations in 15 lethal complementation groups in the zeste-white region were tested. When known, the most extreme alleles at each locus were tested. Only in five loci (33%) were the mutants viable in the germ line. Similar studies of the same deletions and point-mutant lethals in epidermal cells show that 42% of the bands and 77% of the lethal alleles are viable. Thus, germ-line cells have more stringent cell-autonomous genetic requirements than do epidermal cells. The eggs recovered from clones of three of the germ-cell viable zw mutations gave embryos arrested early in embryogenesis, although genotypically identical embryos derived from heterozygous oogonia die as larvae or even hatch as adult escapers. For two genes, homozygosis of the mutations tested also caused embryonic arrest of heterozygous female embryos, and in one case, the eggs did not develop at all. Germ-line clones of one quite leaky mutation gave eggs that were indistinguishable from normal. The abundance of genes whose products are required for oogenesis, whose products are required in the oocyte, and whose activity is required during zygotic development is discussed.

Reproduction ◽  
2014 ◽  
Vol 147 (2) ◽  
pp. 199-209 ◽  
Author(s):  
P I F Inserra ◽  
N P Leopardo ◽  
M A Willis ◽  
A L Freysselinard ◽  
A D Vitullo

The female germ line in mammals is subjected to massive cell death that eliminates 60–85% of the germinal reserve by birth and continues from birth to adulthood until the exhaustion of the germinal pool. Germ cell demise occurs mainly through apoptosis by means of a biased expression in favour of pro-apoptotic members of theBCL2gene family. By contrast, the South American plains vizcacha,Lagostomus maximus, exhibits sustained expression of the anti-apoptoticBCL2gene throughout gestation and a low incidence of germ cell apoptosis. This led to the proposal that, in the absence of death mechanisms other than apoptosis, the female germ line should increase continuously from foetal life until after birth. In this study, we quantified all healthy germ cells and follicles in the ovaries ofL. maximusfrom early foetal life to day 60 after birth using unbiased stereological methods and detected apoptosis by labelling with TUNEL assay. The healthy germ cell population increased continuously from early-developing ovary reaching a 50 times higher population number by the end of gestation. TUNEL-positive germ cells were <0.5% of the germ cell number, except at mid-gestation (3.62%). Mitotic proliferation, entrance into prophase I stage and primordial follicle formation occurred as overlapping processes from early pregnancy to birth. Germ cell number remained constant in early post-natal life, but a remnant population of non-follicular VASA- and PCNA-positive germ cells still persisted at post-natal day 60.L. maximusis the first mammal so far described in which female germ line develops in the absence of constitutive massive germ cell elimination.Free Spanish abstractSpanish translation of this abstract is freely available athttp://www.reproduction-online.org/content/147/2/199/suppl/DC1


Reproduction ◽  
2016 ◽  
Vol 151 (5) ◽  
pp. 553-562 ◽  
Author(s):  
Kavitha Vaithiyanathan ◽  
Seng H Liew ◽  
Nadeen Zerafa ◽  
Thilini Gamage ◽  
Michele Cook ◽  
...  

Abstract Apoptosis plays a prominent role during ovarian development by eliminating large numbers of germ cells from the female germ line. However, the precise mechanisms and regulatory proteins involved in germ cell death are yet to be determined. In this study, we characterised the role of the pro-apoptotic BH3-only protein, BCL2-modifying factor (BMF), in germ cell apoptosis in embryonic and neonatal mouse ovaries. BMF protein was immunohistochemically localised to germ cells at embryonic days 15.5 (E15.5) and E17.5 and postnatal day 1 (PN1), coincident with entry into the meiotic prophase, but was undetectable at E13.5, and only present at low levels at PN3 and PN5. Consistent with this expression pattern, loss of BMF in female mice was associated with a decrease in apoptosis at E15.5 and E17.5. Furthermore, increased numbers of germ cells were found in ovaries from Bmf−/− mice compared with WT animals at E15.5 and PN1. However, germ cell numbers were comparable between Bmf−/− and WT ovaries at PN3, PN5 and PN10. Collectively, these data indicate that BMF mediates foetal oocyte loss and its action limits the maximal number of germ cells attained in the developing ovary, but does not influence the number of primordial follicles initially established in ovarian reserve.


Development ◽  
1981 ◽  
Vol 64 (1) ◽  
pp. 251-258
Author(s):  
Andy McMahon ◽  
Mandy Fosten ◽  
Marilyn Monk

The pattern of expression of the two X chromosomes was investigated in pre-meiotic germ cells from 12½-day-old female embryos heterozygous for the variant electrophoretic forms of the X-linked enzyme phosphoglycerate kinase (PGK-1). If such germ cells carry the preferentially active Searle's translocated X chromosome (Lyon, Searle, Ford & Ohno, 1964), then only the Pgk-1 allele on this chromosome is expressed. This confirms Johnston's evidence (1979,1981) that Pgk-1 expression reflects a single active X chromosome at this time. Extracts of 12½-day germ cells from heterozygous females carrying two normal X chromosomes show both the A and the B forms of PGK; since only one X chromosome in each cell is active, different alleles must be expressed in different cells, suggesting that X-chromosome inactivation is normally random in the germ line. This result makes it unlikely that germ cells are derived from the yolk-sac endoderm where the paternally derived X chromosome is preferentially inactivated. In their pattern of X-chromosome inactivation, germ cells evidently resemble other tissues derived from the epiblast.


2017 ◽  
Vol 71 (1) ◽  
pp. 0-0
Author(s):  
Łukasz Gąsior ◽  
Regina Daszkiewicz ◽  
Mateusz Ogórek ◽  
Zbigniew Polański

In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.


Genetics ◽  
1995 ◽  
Vol 139 (2) ◽  
pp. 561-577 ◽  
Author(s):  
R E Ellis ◽  
J Kimble

Abstract In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two.


Author(s):  
Peter H Vogt ◽  
Jutta Zimmer ◽  
Ulrike Bender ◽  
Thomas Strowitzki

The Ubiquitous Transcribed Y (UTY) AZFa candidate gene on the human Y chromosome and its paralog on the X chromosome, UTX, encode a histone lysine demethylase removing chromatin H3K27 methylation marks at genes transcriptional start sites for activation. Both proteins harbour the conserved Jumonji C (JmjC) domain, functional in chromatin metabolism, and an extended N-terminal tetratrico peptide repeat (TPR) block involved in specific protein-interactions. Specific antisera for human UTY and UTX proteins were developed to distinguish expression of both proteins in human germ cells by immunohistochemical experiments on appropriate tissue sections. In the male germ line, UTY was expressed in the fraction of A spermatogonia located at the basal membrane probably including spermatogonia stem cells. UTX expression was more spread in all spermatogonia and in early spermatids. In female germ line, UTX expression was found in the primordial germ cells of the ovary. UTY was also expressed during fetal male germ cell development, whereas UTX expression was visible only at distinct gestation weeks. Based on these results and the conserved neighboured location of UTY and DDX3Y in Yq11 found in mammals of distinct lineages, we conclude that UTY –like DDX3Y- is part of the Azoospermia factor a (AZFa) locus functioning in human spermatogonia to support the balance of their proliferation-differentiation rate before meiosis. Comparable UTY and DDX3Y expression was also found in gonadoblastoma and dysgerminoma cells found in germ cell nests of the dysgenetic gonads of individuals with disorders of sexual development and a Y chromosome in karyotype (DSD-XY). This confirms that AZFa overlaps with GBY, the Gonadoblastoma susceptibility Y locus, and includes the UTY gene.


2021 ◽  
Author(s):  
Xin Li ◽  
Noor Singh ◽  
Camille Miller ◽  
India Washington ◽  
Bintou Sosseh ◽  
...  

The C. elegans adult hermaphrodite germ line is surrounded by a thin tube formed by somatic sheath cells that support germ cells as they mature from the stem-like mitotic state through meiosis, gametogenesis and ovulation. Recently, we discovered that the distal-most Sh1 sheath cells associate with mitotic germ cells as they exit the niche. Here we report that these distal sheath-associated germ cells differentiate first in animals with temperature-sensitive mutations affecting germ cell state, and stem-like germ cells are maintained distal to the Sh1 boundary. We analyze several markers of the distal sheath, which is best visualized with endogenously tagged membrane proteins, as overexpressed fluorescent proteins fail to localize to distal membrane processes and can cause gonad morphology defects. However, such reagents with highly variable expression can be used to determine the relative positions of the two Sh1 cells, one of which often extends further distal than the other.


2021 ◽  
Author(s):  
Wei Cao ◽  
Christopher Tran ◽  
Stuart K Archer ◽  
Sandeep Gopal ◽  
Roger Pocock

Splicing introns from precursor-messenger RNA (pre-mRNA) transcripts is essential for translating functional proteins. Here, we report that the previously uncharacterized Caenorhabditis elegans protein MOG-7, acts as a pre-mRNA splicing factor. Depleting MOG-7 from the C. elegans germ line causes intron retention in the majority of germline-expressed genes, impeding the germ cell cycle, and causing defects in nuclear morphology, germ cell identity and sterility. Despite the deleterious consequences caused by MOG-7 loss, the adult germ line can functionally recover to produce viable and fertile progeny when MOG-7 is restored. Germline recovery is dependent on a burst of apoptosis that likely clears defective germ cells, and viable gametes generated from the proliferation of germ cells in the progenitor zone. Together, these findings reveal that MOG-7 is essential for germ cell development, and that the germ line is able to functionally recover after a collapse in RNA splicing.


2018 ◽  
Author(s):  
Pratik Kadekar ◽  
Richard Roy

AbstractC. elegans larvae can undergo a global developmental arrest following the execution of a diapause-like state called ‘dauer’ in response to unfavourable growth conditions. Survival in this stage surpasses the normal lifespan of reproductive animals quite dramatically, and without any apparent negative impact on their reproductive fitness. During this period, the germ cells become quiescent and must retain their reproductive integrity so the animal can reproduce following recovery. This germline stem cell (GSC) arrest requires the activity of AMP-activated protein kinase (AMPK) and in its absence the germ line undergoes hyperplasia. We show here that AMPK mutant animals exhibit complete sterility after recovery from dauer, suggesting that germ cell integrity is compromised during this stage in the absence of AMPK. These defects correlate with altered abundance and distribution of a number of chromatin modifications that affect gene expression. These aberrant chromatin modifications, along with the supernumerary germ cell divisions and the observed post-dauer sterility, were all corrected by disabling key effectors of the small interfering RNA pathway (dcr-1 and rde-4) and the primary Argonaute protein ergo-1, suggesting that AMPK regulates the function of these small RNA pathway components, and in its absence, the pathways become abnormally active. The aberrant regulation of the small RNA pathway components releases the germ cells from quiescence to proliferative state thereby compromising germ cell integrity. Curiously, AMPK expression in either the neurons or the excretory system is sufficient to restore the GSC quiescence and the fertility in the AMPK mutant post-dauer adults, while the fertility of these animals is also partially restored by disabling the dsRNA importer SID-1. Our data suggest that AMPK regulates a small RNA pathway in the soma to establish and/or maintain GSC quiescence and integrity cell non-autonomously in response to the energy stress associated with the dauer stage. Our findings therefore provide a unique model to better understand how the soma communicates with the germ line to establish the appropriate epigenetic modifications required to adapt to acute environmental challenges.


Sign in / Sign up

Export Citation Format

Share Document