scholarly journals stand still, a Drosophila Gene Involved in the Female Germline for Proper Survival, Sex Determination and Differentiation

Genetics ◽  
1997 ◽  
Vol 145 (4) ◽  
pp. 975-987
Author(s):  
Giuseppa Pennetta ◽  
Daniel Pauli

We identified a new gene, stand still (stil), required in the female germline for proper survival, sex determination and differentiation. Three strong loss-of-function alleles were isolated. The strongest phenotype exhibited by ovaries dissected from adult females is the complete absence of germ cells. In other ovaries, the few surviving germ cells frequently show a morphology typical of primary spermatocytes. stil is not required either for fly viability or for male germline development. The gene was cloned and found to encode a novel protein. stil is strongly expressed in the female germ cells. Using P[stil  +] transgenes, we show that stil and a closely localized gene are involved in the modification of the ovarian phenotypes of the dominant alleles of ovo caused by heterozygosity of region 49 A-D. The similarity of the mutant phenotypes of stil to that of otu and ovo suggests that the three genes function in a common or in parallel pathways necessary in the female germline for its survival, sex determination and differentiation.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shu Yuan Yang

AbstractGerm cells inDrosophila melanogasterneed intrinsic factors along with somatic signals to activate proper sexual programs. A key factor for male germline sex determination is PHD finger protein 7 (Phf7), a histone reader expressed in the male germline that can trigger sex reversal in female germ cells and is also important for efficient spermatogenesis. Here we find that the evolutionarily novel C-terminus in Phf7 is necessary to turn on the complete male program in the early germline ofD. melanogaster, suggesting that this domain may have been uniquely acquired to regulate sexual differentiation. We further looked for genes regulated byPhf7related to sex determination in the embryonic germline by transcriptome profiling of FACS-purified embryonic gonads. One of the genes positively-regulated by Phf7 in the embryonic germline was anHP1family member,Heterochromatin Protein 1D3 chromoshadow domain (HP1D3csd).We find that this gene is needed for Phf7 to induce male-like development in the female germline, indicating that HP1D3csd is an important factor acting downstream of Phf7 to regulate germline masculinization.


2009 ◽  
Vol 30 (6) ◽  
pp. 624-712 ◽  
Author(s):  
Mark A. Edson ◽  
Ankur K. Nagaraja ◽  
Martin M. Matzuk

Abstract Two major functions of the mammalian ovary are the production of germ cells (oocytes), which allow continuation of the species, and the generation of bioactive molecules, primarily steroids (mainly estrogens and progestins) and peptide growth factors, which are critical for ovarian function, regulation of the hypothalamic-pituitary-ovarian axis, and development of secondary sex characteristics. The female germline is created during embryogenesis when the precursors of primordial germ cells differentiate from somatic lineages of the embryo and take a unique route to reach the urogenital ridge. This undifferentiated gonad will differentiate along a female pathway, and the newly formed oocytes will proliferate and subsequently enter meiosis. At this point, the oocyte has two alternative fates: die, a common destiny of millions of oocytes, or be fertilized, a fate of at most approximately 100 oocytes, depending on the species. At every step from germline development and ovary formation to oogenesis and ovarian development and differentiation, there are coordinated interactions of hundreds of proteins and small RNAs. These studies have helped reproductive biologists to understand not only the normal functioning of the ovary but also the pathophysiology and genetics of diseases such as infertility and ovarian cancer. Over the last two decades, parallel progress has been made in the assisted reproductive technology clinic including better hormonal preparations, prenatal genetic testing, and optimal oocyte and embryo analysis and cryopreservation. Clearly, we have learned much about the mammalian ovary and manipulating its most important cargo, the oocyte, since the birth of Louise Brown over 30 yr ago.


2019 ◽  
Author(s):  
Lars Benner ◽  
Katherine Prothro ◽  
Katherine McJunkin

AbstractThe germline sex determination pathway in C. elegans determines whether germ cells develop as oocytes or sperm, with no previously known effect on viability. The mir-35 family of microRNAs are expressed in the C. elegans germline and embryo and are essential for both viability and normal hermaphroditic sex determination, preventing aberrant male gene expression in XX hermaphrodite embryos. Here we show that combining feminizing mutations with partial loss of function of the mir-35 family results in enhanced penetrance embryonic lethality that preferentially kills XO animals. This lethal phenotype is due to altered signaling through the germline sex determination pathway, and maternal germline feminization is sufficient to induce enhanced lethality. These findings reveal a surprising pleiotropy of sperm-fate promoting pathways on organismal viability. Overall, our results demonstrate an unexpectedly strong link between sex determination and embryonic viability, and suggest that in wild type animals, mir-35 family members buffer against misregulation of pathways outside the sex determination program, allowing for clean sex reversal rather than deleterious effects of perturbing sex determination genes.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 95-108
Author(s):  
Helen K Salz ◽  
Thomas W Flickinger

Abstract The Drosophila snf gene encodes a protein with functional homology to the mammalian UlA and U2B″ snRNP proteins. Studies, based on the analysis of three viable alleles, have suggested a role for snf in establishing the female-specific splicing pattern of the sex determination switch gene, Sex-lethal. Here, we show that the non-sex-specific lethal null allele is required for female sex determination, arguing against the formal possibility that the viable alleles disrupt a function unrelated to snf's wild-type function. Moreover, we find snf is required for normal cell growth and/or survival, as expected for a protein involved in a cell-vital process such as RNA splicing. We also show that of the three viable alleles only one, snfJA2, is a partial loss-of-function mutation. The other two viable alleles, snf1621 and snfe8H, encode antimorphic proteins. We find the antimorphic proteins are mislocalized and correlate their mislocalization with their molecular lesions and mutant phenotypes. Finally, we provide genetic evidence that the antimorphic alleles interfere with the autoregulatory splicing function of the Sex-lethal protein. Based on these studies we suggest a model in which the snRNP protein, Snf, functions with Sex-lethal to block recognition of the regulated male-specific exon.


Genetics ◽  
1992 ◽  
Vol 130 (3) ◽  
pp. 597-612 ◽  
Author(s):  
B Granadino ◽  
A San Juán ◽  
P Santamaria ◽  
L Sánchez

Abstract In Drosophila melanogaster, the female sexual development of the soma and the germline requires the activity of the gene Sxl. The somatic cells need the function of the gene fl(2)d to follow the female developmental pathway, due to its involvement in the female-specific splicing of Sxl RNA. Here we report the analysis of both fl(2)d1 and fl(2)d2 mutations: (1) fl(2)d1 is a temperature-sensitive mutation lethal in females and semilethal in males; (2) fl(2)d2 is lethal in both sexes; (3) the fl(2)d1/fl(2)d2 constitution is temperature-sensitive and lethal in females, while semilethal in males. The temperature-sensitive period of fl(2)d1 in females expands the whole development. SxlM1 partially suppresses the lethality of fl(2)d1 homozygous females and that of fl(2)d1/fl(2)d2 constitution, whereas it does not suppress the lethality of fl(2)d2 homozygous females. The addition of extra Sxl+ copies does not increase the suppression effect of SxlM1. The fl(2)d1 mutation in homozygosis and the fl(2)d1/fl(2)d2 constitution, but not the fl(2)d2 in homozygosis, partially suppress the lethality of SxlM1 males. This suppression is not prevented by the addition of extra Sxl+ copies. The semilethality of both fl(2)d1 and fl(2)d1/fl(2)d2 males, and the lethality of fl(2)d2 males, is independent of Sxl function. There is no female synergistic lethality between mutations at fl(2)d and neither at sc or da. However, the female synergistic lethality between mutations at Sxl and either sc or da is increased by fl(2)d mutations. We have analyzed the effect of the fl(2)d mutations on the germline development of both females and males. For that purpose, we carried out the clonal analysis of fl(2)d1 in the germline. In addition, pole cells homozygous for fl(2)d2 were transplanted into wild-type host embryos, and we checked whether the mutant pole cells were capable of forming functional gametes. The results indicated that fl(2)d mutant germ cells cannot give rise to functional oocytes, while they can form functional sperm. Moreover, SxlM1 suppresses the sterility of the fl(2)d1 homozygous females developing at the permissive temperature. Thus, with respect to the development of the germline the fl(2)d mutations mimic the behavior of loss-of-function mutations at the gene Sxl. Females double heterozygous for fl(2)d and snf1621 are fully viable and fertile. fl(2)d2 in heterozygosis partially suppresses the phenotype of female germ cells homozygous for snf1621; however, this is not the case with the fl(2)d1 mutation. The fl(2)d mutations partially suppress the phenotype of the female germ cells homozygous for ovoDIrSI.(ABSTRACT TRUNCATED AT 400 WORDS)


2021 ◽  
Author(s):  
Pradeep Kumar Bhaskar ◽  
Sheryl Southard ◽  
Kelly Baxter ◽  
Mark Van Doren

SummaryThe establishment of sexual identity in germ cells is critical for the development of male and female germline stem cells (GSCs) and production of sperm vs. eggs. Thus, this process is essential for sexual reproduction and human fertility. Germ cells depend on signals from the somatic gonad to determine their sex, but in organisms such as flies, mice and humans, the sex chromosome genotype of the germ cells is also important for germline sexual development. How somatic signals and germ cell-intrinsic cues act together to regulate germline sex determination is a key question about which little is known. We have found that JAK/STAT signaling in the GSC niche promotes male identity in germ cells and GSCs, in part by activating expression of the epigenetic reader Phf7. We have also found that JAK/STAT signaling is blocked in XX (female) germ cells through the intrinsic action of the sex determination gene Sex lethal, which preserves female identity. Thus, an important function of germline sexual identity is to control how GSCs respond to signals in their niche environment.


Genetics ◽  
1993 ◽  
Vol 133 (4) ◽  
pp. 919-931 ◽  
Author(s):  
P L Graham ◽  
J Kimble

Abstract Caenorhabditis elegans hermaphrodites make first sperm, then oocytes. By contrast, animals homozygous for any of six loss-of-function mutations in the gene mog-1 (for masculinization of the germ line) make sperm continuously and do not switch into oogenesis. Therefore, in mog-1 mutants, germ cells that normally would become oocytes are transformed into sperm. By contrast, somatic sexual fates are normal, suggesting that mog-1 plays a germ line-specific role in sex determination. Analyses of double mutants suggest that mog-1 negatively regulates the fem genes and/or fog-1: mog-1; fem and mog-1; fog-1 double mutants all make oocytes rather than sperm. Therefore, we propose that wild-type mog-1 is required in the hermaphrodite germ line for regulation of the switch from spermatogenesis to oogenesis rather than for specification of oogenesis per se. In addition to its role in germline sex determination, maternal mog-1 is required for embryogenesis: most progeny of a mog-1; fem or mog-1; fog-1 mother die as embryos. How might the roles of mog-1 in the sperm/oocyte switch and embryogenesis be linked? Previous work showed that fem-3 is regulated post-transcriptionally to achieve the sperm/oocyte switch. We speculate that mog-1 may function in the post-transcriptional regulation of numerous germ-line RNAs, including fem-3. A loss of mog-1 might inappropriately activate fem-3 and thereby abolish the sperm/oocyte switch; its loss might also lead to misregulation of maternal RNAs and thus embryonic death.


Genetics ◽  
1995 ◽  
Vol 139 (3) ◽  
pp. 1309-1320 ◽  
Author(s):  
S Wayne ◽  
K Liggett ◽  
J Pettus ◽  
R N Nagoshi

Abstract The small ovary gene (sov) is required for the development of the Drosophila ovary. Six EMS-induced recessive alleles have been identified. Hypomorphic alleles are female sterile and have no effect on male fertility, whereas more severe mutations result in lethality. The female-sterile alleles produce a range of mutant phenotypes that affect the differentiation of both somatic and germline tissues. These mutations generally produce small ovaries that contain few egg cysts and disorganized ovarioles, and in the most extreme case no ovarian tissue is present. The mutant egg cysts that develop have aberrant morphology, including abnormal numbers of nurse cells and patches of necrotic cells. We demonstrate that sov gene expression is not required in the germline for the development of functional egg cysts. This indicates that the sov function is somatic dependent. We present evidence using loss-of-function and constitutive forms of the somatic sex regulatory genes that sov activity is essential for the development of the somatic ovary regardless of the chromosomal sex of the fly. In addition, the genetic mapping of the sov locus is presented, including the characterization of two lethal sov alleles and complementation mapping with existing rearrangements.


2020 ◽  
Author(s):  
Anne E. Smolko ◽  
Laura Shapiro-Kulnane ◽  
Helen K. Salz

ABSTRACTMaintenance of germ cell sexual identity is essential for reproduction. Entry into the spermatogenesis or oogenesis pathway requires that the appropriate gene network is activated and the antagonist network is silenced. For example, in Drosophila female germ cells, forced expression of the testis-specific PHD finger protein 7 (PHF7) disrupts oogenesis leading to either an agametic or germ cell tumor phenotype. Here we show that PHF7 expressing ovarian germ cells inappropriately express hundreds of genes, many of which are male germline genes. We find that the majority of genes under PHF7 control in female germ cells are not under PHF7 control in male germ cells, suggesting that PHF7 is acting in a tissue-specific manner. Remarkably, transcriptional reprogramming includes a positive autoregulatory feedback mechanism in which ectopic PHF7 overcomes its own transcriptional repression through promoter switching. Furthermore, we find that tumorigenic capacity is dependent on the dosage of phf7. This study reveals that high levels of ectopic PHF7 in female germ cells leads to a loss of sexual identity and promotion of a regulatory circuit beneficial for tumor initiation and progression.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Lihua Zhao ◽  
Liping Liu ◽  
Yanhui Liu ◽  
Xianying Dou ◽  
Hanyang Cai ◽  
...  

AbstractUnderstanding germline specification in plants could be advantageous for agricultural applications. In recent decades, substantial efforts have been made to understand germline specification in several plant species, including Arabidopsis, rice, and maize. However, our knowledge of germline specification in many agronomically important plant species remains obscure. Here, we characterized the female germline specification and subsequent female gametophyte development in pineapple using callose staining, cytological, and whole-mount immunolocalization analyses. We also determined the male germline specification and gametophyte developmental timeline and observed male meiotic behavior using chromosome spreading assays. Furthermore, we identified 229 genes that are preferentially expressed at the megaspore mother cell (MMC) stage during ovule development and 478 genes that are preferentially expressed at the pollen mother cell (PMC) stage of anther development using comparative transcriptomic analysis. The biological functions, associated regulatory pathways and expression patterns of these genes were also analyzed. Our study provides a convenient cytological reference for exploring pineapple germline development and a molecular basis for the future functional analysis of germline specification in related plant species.


Sign in / Sign up

Export Citation Format

Share Document