scholarly journals A New Recombinational DNA Repair Gene From Schizosaccharomyces pombe With Homology to Escherichia coli RecA

Genetics ◽  
1999 ◽  
Vol 152 (4) ◽  
pp. 1557-1572 ◽  
Author(s):  
Fuat K Khasanov ◽  
Galina V Savchenko ◽  
Elena V Bashkirova ◽  
Vladimir G Korolev ◽  
Wolf-Dietrich Heyer ◽  
...  

Abstract A new DNA repair gene from Schizosaccharomyces pombe with homology to RecA was identified and characterized. Comparative analysis showed highest similarity to Saccharomyces cerevisiae Rad55p. rhp55+ (rad homologue pombe 55) encodes a predicted 350-amino-acid protein with an Mr of 38,000. The rhp55Δ mutant was highly sensitive to methyl methanesulfonate (MMS), ionizing radiation (IR), and, to a lesser degree, UV. These phenotypes were enhanced at low temperatures, similar to deletions in the S. cerevisiae RAD55 and RAD57 genes. Many rhp55Δ cells were elongated with aberrant nuclei and an increased DNA content. The rhp55 mutant showed minor deficiencies in meiotic intra- and intergenic recombination. Sporulation efficiency and spore viability were significantly reduced. Double-mutant analysis showed that rhp55+ acts in one DNA repair pathway with rhp51+ and rhp54+, homologs of the budding yeast RAD51 and RAD54 genes, respectively. However, rhp55+ is in a different epistasis group for repair of UV-, MMS-, or γ-ray-induced DNA damage than is rad22+, a putative RAD52 homolog of fission yeast. The structural and functional similarity suggests that rhp55+ is a homolog of the S. cerevisiae RAD55 gene and we propose that the functional diversification of RecA-like genes in budding yeast is evolutionarily conserved.

2000 ◽  
Vol 268 (1) ◽  
pp. 210-215 ◽  
Author(s):  
Marcel Lombaerts ◽  
Jerrelyne I. Goeloe ◽  
Hans den Dulk ◽  
Jourica A. Brandsma ◽  
Jaap Brouwer

Author(s):  
Mitsuoki Morimyo ◽  
Kazuei Mita ◽  
Etsuko Hongo ◽  
Tomoyasu Higashi ◽  
Kimihiko Sugaya ◽  
...  

1989 ◽  
Vol 9 (4) ◽  
pp. 1794-1798 ◽  
Author(s):  
M van Duin ◽  
J van Den Tol ◽  
J H Hoeijmakers ◽  
D Bootsma ◽  
I P Rupp ◽  
...  

We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature.


1995 ◽  
Vol 15 (12) ◽  
pp. 7067-7080 ◽  
Author(s):  
A R Lehmann ◽  
M Walicka ◽  
D J Griffiths ◽  
J M Murray ◽  
F Z Watts ◽  
...  

The rad18 mutant of Schizosaccharomyces pombe is very sensitive to killing by both UV and gamma radiation. We have cloned and sequenced the rad18 gene and isolated and sequenced its homolog from Saccharomyces cerevisiae, designated RHC18. The predicted Rad18 protein has all the structural properties characteristic of the SMC family of proteins, suggesting a motor function--the first implicated in DNA repair. Gene deletion shows that both rad18 and RHC18 are essential for proliferation. Genetic and biochemical analyses suggest that the product of the rad18 gene acts in a DNA repair pathway for removal of UV-induced DNA damage that is distinct from classical nucleotide excision repair. This second repair pathway involves the products of the rhp51 gene (the homolog of the RAD51 gene of S. cerevisiae) and the rad2 gene.


1989 ◽  
Vol 9 (4) ◽  
pp. 1794-1798
Author(s):  
M van Duin ◽  
J van Den Tol ◽  
J H Hoeijmakers ◽  
D Bootsma ◽  
I P Rupp ◽  
...  

We report that the genes for the homologous Saccharomyces cerevisiae RAD10 and human ERCC-1 DNA excision repair proteins harbor overlapping antisense transcription units in their 3' regions. Since naturally occurring antisense transcription is rare in S. cerevisiae and humans (this is the first example in human cells), our findings indicate that antisense transcription in the ERCC-1-RAD10 gene regions represents an evolutionarily conserved feature.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Aysel Kalayci Yigin ◽  
Mehmet Bulent Vatan ◽  
Ramazan Akdemir ◽  
Muhammed Necati Murat Aksoy ◽  
Mehmet Akif Cakar ◽  
...  

Polymorphisms in Lys939Gln XPC gene may diminish DNA repair capacity, eventually increasing the risk of carcinogenesis. The aim of the present study was to evaluate the significance of polymorphism Lys939Gln in XPC gene in patients with mitral chordae tendinea rupture (MCTR). Twenty-one patients with MCTR and thirty-seven age and sex matched controls were enrolled in the study. Genotyping of XPC gene Lys939Gln polymorphism was carried out using polymerase chain reaction- (PCR-) restriction fragment length polymorphism (RFLP). The frequencies of the heterozygote genotype (Lys/Gln-AC) and homozygote genotype (Gln/Gln-CC) were significantly different in MCTR as compared to control group, respectively (52.4% versus 43.2%,p=0.049; 38.15% versus 16.2%,p=0.018). Homozygote variant (Gln/Gln) genotype was significantly associated with increased risk of MCTR (OR = 2.059; 95% CI: 1.097–3.863;p=0.018). Heterozygote variant (Lys/Gln) genotype was also highly significantly associated with increased risk of MCTR (OR = 1.489; 95% CI: 1.041–2.129;p=0.049). The variant allele C was found to be significantly associated with MCTR (OR = 1.481; 95% CI: 1.101–1.992;p=0.011). This study has demonstrated the association of XPC gene Lys939Gln polymorphism with MCTR, which is significantly associated with increased risk of MCTR.


2021 ◽  
Vol 28 (3) ◽  
pp. 1879-1885
Author(s):  
Maria Samara ◽  
Maria Papathanassiou ◽  
Lampros Mitrakas ◽  
George Koukoulis ◽  
Panagiotis J. Vlachostergios ◽  
...  

Single nucleotide polymorphisms (SNPs) in DNA repair genes may predispose to urothelial carcinoma of the bladder (UCB). This study focused on three specific SNPs in a population with high exposure to environmental carcinogens including tobacco and alcohol. A case-control study design was used to assess for presence of XPC PAT +/−, XRCC3 Thr241Met, and ERCC2 Lys751Gln DNA repair gene SNPs in peripheral blood from patients with UCB and healthy individuals. One hundred patients and equal number of healthy subjects were enrolled. The XPC PAT +/+ genotype was associated with a 2-fold increased risk of UCB (OR = 2.16; 95%CI: 1.14–4; p = 0.01). The −/+ and +/+ XPC PAT genotypes were more frequently present in patients with multiple versus single tumors (p = 0.01). No association was detected between ERCC2 Lys751Gln genotypes/alleles, and risk for developing UCB. Presence of the XRCC3 TT genotype (OR = 0.14; 95%CI:0.07–0.25; p < 0.01) and of the T allele overall (OR = 0.26; 95%CI:0.16–0.41; p < 0.01) conferred a protective effect against developing UCB. The XPC PAT −/+ and XRCC3 Thr241Met SNPs are associated with predisposition to UCB. The XPC PAT −/+ SNP is also an indicator of bladder tumor multiplicity, which might require a more individualized surveillance and treatment.


2014 ◽  
Vol 41 (3) ◽  
pp. 458-465 ◽  
Author(s):  
Gustavo Martelli Palomino ◽  
Carmen L. Bassi ◽  
Isabela J. Wastowski ◽  
Danilo J. Xavier ◽  
Yara M. Lucisano-Valim ◽  
...  

Objective.Patients with systemic sclerosis (SSc) exhibit increased toxicity when exposed to genotoxic agents. In our study, we evaluated DNA damage and polymorphic sites in 2 DNA repair genes (XRCC1Arg399Gln andXRCC4Ile401Thr) in patients with SSc.Methods.A total of 177 patients were studied for DNA repair gene polymorphisms. Fifty-six of them were also evaluated for DNA damage in peripheral blood cells using the comet assay.Results.Compared to controls, the patients as a whole or stratified into major clinical variants (limited or diffuse skin involvement), irrespective of the underlying treatment schedule, exhibited increased DNA damage.XRCC1(rs: 25487) andXRCC4(rs: 28360135) allele and genotype frequencies observed in patients with SSc were not significantly different from those observed in controls; however, theXRCC1Arg399Gln allele was associated with increased DNA damage only in healthy controls and theXRCC4Ile401Thr allele was associated with increased DNA damage in both patients and controls. Further, theXRCC1Arg399Gln allele was associated with the presence of antinuclear antibody and anticentromere antibody. No association was observed between these DNA repair gene polymorphic sites and clinical features of patients with SSc.Conclusion.These results corroborate the presence of genomic instability in SSc peripheral blood cells, as evaluated by increased DNA damage, and show that polymorphic sites of theXRCC1andXRCC4DNA repair genes may differentially influence DNA damage and the development of autoantibodies.


Sign in / Sign up

Export Citation Format

Share Document