scholarly journals Depletion of H2A-H2B Dimers in Saccharomyces cerevisiae Triggers Meiotic Arrest by Reducing IME1 Expression and Activating the BUB2-Dependen Branch of the Spindle Checkpoint

Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1333-1344
Author(s):  
Sean E Hanlon ◽  
David N Norris ◽  
Andrew K Vershon

Abstract In the yeast Saccharomyces cerevisiae, diploid strains carrying homozygous hta1-htb1Δ mutations express histone H2A-H2B dimers at a lower level than do wild-type cells. Although this mutation has only minor effects on mitotic growth, it causes an arrest in sporulation prior to the first meiotic division. In this report, we show that the hta1-htb1Δ mutant exhibits reduced expression of early and middle-sporulation-specific genes and that the meiotic arrest of the hta1-htb1Δ mutant can be partially bypassed by overexpression of IME1. Additionally, deletions of BUB2 or BFA1, components of one branch of the spindle checkpoint pathway, bypass the meiotic arrest. Mutations in the other branch of the pathway or in the pachytene checkpoint are unable to suppress the meiotic block. These observations indicate that depletion of the H2A-H2B dimer blocks sporulation by at least two mechanisms: disruption of the expression of meiotic regulatory genes and activation of the spindle checkpoint. Our results show that the failure to progress through the meiotic pathway is not the result of global chromosomal alterations but that specific aspects of meiosis are sensitive to depletion of the H2A-H2B dimer.

Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 595-609
Author(s):  
Hyung-Seo Hwang ◽  
Kiwon Song

Abstract During mitosis, genomic integrity is maintained by the proper coordination of mitotic events through the spindle checkpoint. The bifurcated spindle checkpoint blocks cell cycle progression at metaphase by monitoring unattached kinetochores and inhibits mitotic exit in response to the incorrect orientation of the mitotic spindle. Bfa1p is a spindle checkpoint regulator of budding yeast in the Bub2p checkpoint pathway for proper mitotic exit. We have isolated a novel Bfa1p interacting protein named Ibd2p in the budding yeast Saccharomyces cerevisiae. We found that IBD2 (Inhibition of Bud Division 2) is not an essential gene but its deletion mutant proceeded through the cell cycle in the presence of microtubule-destabilizing drugs, thereby inducing a sharp decrease in viability. In addition, overexpression of Mps1p caused partial mitotic arrest in ibd2Δ as well as in bub2Δ, suggesting that IBD2 encodes a novel component of the spindle checkpoint downstream of MPS1. Overexpression of Ibd2p induced mitotic arrest with increased levels of Clb2p in wild type and mad2Δ, but not in deletion mutants of BUB2 and BFA1. Pds1p was also stabilized by the overexpression of Ibd2p in wild-type cells. The mitotic arrest defects observed in ibd2Δ in the presence of nocodazole were restored by additional copies of BUB2, BFA1, and CDC5, whereas an extra copy of IBD2 could not rescue the mitotic arrest defects of bub2Δ and bfa1Δ. The mitotic arrest defects of ibd2Δ were not recovered by MAD2, or vice versa. Analysis of the double mutant combinations ibd2Δmad2Δ, ibd2Δbub2Δ, and ibd2Δdyn1Δ showed that IBD2 belongs to the BUB2 epistasis group. Taken together, these data demonstrate that IBD2 encodes a novel component of the BUB2-dependent spindle checkpoint pathway that functions upstream of BUB2 and BFA1.


2000 ◽  
Vol 350 (1) ◽  
pp. 313-319 ◽  
Author(s):  
Marek SKONECZNY ◽  
Joanna RYTKA

Saccharomyces cerevisiae genes related to respiration are typically controlled by oxygen and haem. Usually the regulation by these factors is co-ordinated; haem is indicated as the oxygen sensor. However, the responsiveness of peroxisome functions to these regulatory factors is poorly understood. The expression of CTA1, POX1 and PEX1 genes encoding the peroxisomal proteins catalase A, acyl-CoA oxidase and Pex1p peroxin respectively was studied under various conditions: in anaerobiosis, in the absence of haem and in respiratory incompetence caused by the lack of a mitochondrial genome (ρ0). The influence of haem deficiency or ρ0 on peroxisomal morphology was also investigated. Respiratory incompetence has no effect on the expression of CTA1 and POX1, whereas in the absence of haem their expression is markedly decreased. The synthesis of Pex1p is decreased in ρ0 cells and is decreased even more in haem-deficient cells. Nevertheless, peroxisomal morphology in both these types of cell does not differ significantly from the morphology of peroxisomes in wild-type cells. The down-regulating effect of anoxia on the expression of CTA1 and POX1 is even stronger than the effect of haem deficiency and is not reversed by the addition of exogenous haem or the presence of endogenous haem. Moreover, neither of these genes responds to the known haem-controlled transcriptional factor Hap1p. In contrast with the other two genes studied, PEX1 is up-regulated in anaerobiosis. The existence of one or more novel mechanisms of regulation of peroxisomal genes by haem and oxygen, different from those already known in S. cerevisiae, is postulated.


Genetics ◽  
1975 ◽  
Vol 81 (4) ◽  
pp. 615-629
Author(s):  
Christopher W Lawrence ◽  
Fred Sherman ◽  
Mary Jackson ◽  
Richard A Gilmore

ABSTRACT We have investigated the order of the four genes cyc1, rad7, SUP4, and cdc8 which form a tightly linked cluster on the right arm of chromosome X in the yeast Saccharomyces cerevisiae. Crossing over and coconversion data from tetrad analysis established the gene order to be centromere–cyc1–rad7–SUP4. Also cdc8 appeared to be distal to SUP4 on the basis of crossovers that were associated with conversion of SUP4. The frequencies of recombination and the occurrence of coconversions suggest that these four genes are contiguous or at least nearly so. Gene-conversion frequencies for several cyc1 alleles were studied, including cyc1–1, a deletion of the whole gene that extends into the rad7 locus. The cyc1–1 deletion was found to be capable of conversion, though at a frequency some fivefold less than the other alleles studied, and both 3:1 and 1:3 events were detected. In general 1:3 and 3:1 conversion events were equally frequent at all loci studied, and approximately 50% of conversions were accompanied by reciprocal recombination for flanking markers. The orientation of the cyc1 gene could not be clearly deduced from the behavior of the distal marker SUP4 in wild-type recombinants that arose from diploids heteroallelic for cyc1 mutations.


1990 ◽  
Vol 10 (9) ◽  
pp. 4905-4911
Author(s):  
P S Swerdlow ◽  
T Schuster ◽  
D Finley

Histones H2A and H2B are modified by ubiquitination of specific lysine residues in higher and lower eucaryotes. To identify functions of ubiquitinated histone H2A, we studied an organism in which genetic analysis of histones is feasible, the yeast Saccharomyces cerevisiae. Surprisingly, immunoblotting experiments using both anti-ubiquitin and anti-H2A antibodies gave no evidence that S. cerevisiae contains ubiquitinated histone H2A. The immunoblot detected a variety of other ubiquitinated species. A sequence of five residues in S. cerevisiae histone H2A that is identical to the site of H2A ubiquitination in higher eucaryotes was mutated to substitute arginines for lysines. Any ubiquitination at this site would be prevented by these mutations. Yeast organisms carrying this mutation were indistinguishable from the wild type under a variety of conditions. Thus, despite the existence in S. cerevisiae of several gene products, such as RAD6 and CDC34, which are capable of ubiquitinating histone H2A in vitro, ubiquitinated histone H2A is either scarce in or absent from S. cerevisiae. Furthermore, the histone H2A sequence which serves as a ubiquitination site in higher eucaryotes is not essential for yeast growth, sporulation, or resistance to either heat stress or UV radiation.


1990 ◽  
Vol 10 (9) ◽  
pp. 4905-4911 ◽  
Author(s):  
P S Swerdlow ◽  
T Schuster ◽  
D Finley

Histones H2A and H2B are modified by ubiquitination of specific lysine residues in higher and lower eucaryotes. To identify functions of ubiquitinated histone H2A, we studied an organism in which genetic analysis of histones is feasible, the yeast Saccharomyces cerevisiae. Surprisingly, immunoblotting experiments using both anti-ubiquitin and anti-H2A antibodies gave no evidence that S. cerevisiae contains ubiquitinated histone H2A. The immunoblot detected a variety of other ubiquitinated species. A sequence of five residues in S. cerevisiae histone H2A that is identical to the site of H2A ubiquitination in higher eucaryotes was mutated to substitute arginines for lysines. Any ubiquitination at this site would be prevented by these mutations. Yeast organisms carrying this mutation were indistinguishable from the wild type under a variety of conditions. Thus, despite the existence in S. cerevisiae of several gene products, such as RAD6 and CDC34, which are capable of ubiquitinating histone H2A in vitro, ubiquitinated histone H2A is either scarce in or absent from S. cerevisiae. Furthermore, the histone H2A sequence which serves as a ubiquitination site in higher eucaryotes is not essential for yeast growth, sporulation, or resistance to either heat stress or UV radiation.


Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 81-95 ◽  
Author(s):  
E J Louis ◽  
J E Haber

Abstract The presence of the tRNA ochre suppressors SUP11 and SUP5 is found to induce meiosis I nondisjunction in the yeast Saccharomyces cerevisiae. The induction increases with increasing dosage of the suppressor and decreases in the presence of an antisuppressor. The effect is independent of the chromosomal location of SUP11. Each of five different chromosomes monitored exhibited nondisjunction at frequencies of 0.1%-1.1% of random spores, which is a 16-160-fold increase over wild-type levels. Increased nondisjunction is reflected by a marked increase in tetrads with two and zero viable spores. In the case of chromosome III, for which a 50-cM map interval was monitored, the resulting disomes are all in the parental nonrecombinant configuration. Recombination along chromosome III appears normal both in meioses that have no nondisjunction and in meioses for which there was nondisjunction of another chromosome. We propose that a proportion of one or more proteins involved in chromosome pairing, recombination or segregation are aberrant due to translational read-through of the normal ochre stop codon. Hygromycin B, an antibiotic that can suppress nonsense mutations via translational read-through, also induces nonrecombinant meiosis I nondisjunction. Increases in mistranslation, therefore, increase the production of aneuploids during meiosis. There was no observable effect of SUP11 on mitotic chromosome nondisjunction; however some disomes caused SUP11 ade2-ochre strains to appear white or red, instead of pink.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 67-77 ◽  
Author(s):  
A Parket ◽  
O Inbar ◽  
M Kupiec

Abstract The Ty retrotransposons are the main family of dispersed repeated sequences in the yeast Saccharomyces cerevisiae. These elements are flanked by a pair of long terminal direct repeats (LTRs). Previous experiments have shown that Ty elements recombine at low frequencies, despite the fact that they are present in 30 copies per genome. This frequency is not highly increased by treatments that cause DNA damage, such as UV irradiation. In this study, we show that it is possible to increase the recombination level of a genetically marked Ty by creating a double-strand break in it. This break is repaired by two competing mechanisms: one of them leaves a single LTR in place of the Ty, and the other is a gene conversion event in which the marked Ty is replaced by an ectopically located one. In a strain in which the marked Ty has only one LTR, the double-strand break is repaired by conversion. We have also measured the efficiency of repair and monitored the progression of the cells through the cell-cycle. We found that in the presence of a double-strand break in the marked Ty, a proportion of the cells is unable to resume growth.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1493-1502
Author(s):  
Richard D Gardner ◽  
Atasi Poddar ◽  
Chris Yellman ◽  
Penny A Tavormina ◽  
M Cristina Monteagudo ◽  
...  

Abstract We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.


2002 ◽  
Vol 22 (20) ◽  
pp. 6946-6948 ◽  
Author(s):  
Joanna Kamińska ◽  
Beata Gajewska ◽  
Anita K. Hopper ◽  
Teresa ˙Zołądek

ABSTRACT Rsp5p is an ubiquitin-protein ligase of Saccharomyces cerevisiae that has been implicated in numerous processes including transcription, mitochondrial inheritance, and endocytosis. Rsp5p functions at multiple steps of endocytosis, including ubiquitination of substrates and other undefined steps. We propose that one of the roles of Rsp5p in endocytosis involves maintenance and remodeling of the actin cytoskeleton. We report the following. (i) There are genetic interactions between rsp5 and several mutant genes encoding actin cytoskeletal proteins. rsp5 arp2, rsp5 end3, and rsp5 sla2 double mutants all show synthetic growth defects. Overexpressed wild-type RSP5 or mutant rsp5 genes with lesions of some WW domains suppress growth defects of arp2 and end3 cells. The defects in endocytosis, actin cytoskeleton, and morphology of arp2 are also suppressed. (ii) Rsp5p and Sla2p colocalize in abnormal F-actin-containing clumps in arp2 and pan1 mutants. Immunoprecipitation experiments confirmed that Rsp5p and Act1p colocalize in pan1 mutants. (iii) Rsp5p and Sla2p coimmunoprecipitate and partially colocalize to punctate structures in wild-type cells. These studies provide the first evidence for an interaction of an actin cytoskeleton protein with Rsp5p. (iv) rsp5-w1 mutants are resistant to latrunculin A, a drug that sequesters actin monomers and depolymerizes actin filaments, consistent with the fact that Rsp5p is involved in actin cytoskeleton dynamics.


1995 ◽  
Vol 130 (3) ◽  
pp. 687-700 ◽  
Author(s):  
E Yeh ◽  
R V Skibbens ◽  
J W Cheng ◽  
E D Salmon ◽  
K Bloom

We have used time-lapse digital- and video-enhanced differential interference contrast (DE-DIC, VE-DIC) microscopy to study the role of dynein in spindle and nuclear dynamics in the yeast Saccharomyces cerevisiae. The real-time analysis reveals six stages in the spindle cycle. Anaphase B onset appears marked by a rapid phase of spindle elongation, simultaneous with nuclear migration into the daughter cell. The onset and kinetics of rapid spindle elongation are identical in wild type and dynein mutants. In the absence of dynein the nucleus does not migrate as close to the neck as in wild-type cells and initial spindle elongation is confined primarily to the mother cell. Rapid oscillations of the elongating spindle between the mother and bud are observed in wild-type cells, followed by a slower growth phase until the spindle reaches its maximal length. This stage is protracted in the dynein mutants and devoid of oscillatory motion. Thus dynein is required for rapid penetration of the nucleus into the bud and anaphase B spindle dynamics. Genetic analysis reveals that in the absence of a functional central spindle (ndcl), dynein is essential for chromosome movement into the bud. Immunofluorescent localization of dynein-beta-galactosidase fusion proteins reveals that dynein is associated with spindle pole bodies and the cell cortex: with spindle pole body localization dependent on intact microtubules. A kinetic analysis of nuclear movement also revealed that cytokinesis is delayed until nuclear translocation is completed, indicative of a surveillance pathway monitoring nuclear transit into the bud.


Sign in / Sign up

Export Citation Format

Share Document