scholarly journals Motor Skill Training Effect on Real-Time Prefrontal Cortex Activation During Walking

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 162-162
Author(s):  
Subashan Perera ◽  
Theodore Huppert ◽  
Jennifer Brach ◽  
Andrea Rosso ◽  
Nemin Chen

Abstract We aimed to test the effects of motor skill training (MST) on gait automaticity measured by changes in prefrontal cortex (PFC) activation during actual walking. We used data from a 12-week trial of older adults (mean age=75.5, 60.5% women) randomized to standard physical therapy and standard+MST in a 1:1 ratio. Functional near infrared spectroscopy (fNIRS) measured PFC activation during simple and dual task walking. We will apply linear mixed models to assess effects of task, time, and MST on PFC activation. We will compare the PFC activation 1) during dual task walking compared to simple walking; 2) across visits after intervention; and 3) between participants receiving MST compared to standard physical therapy. These results will demonstrate whether gait automaticity, as evidenced by PFC activation during walking, is affected by MST.

2021 ◽  
Vol 36 (6) ◽  
pp. 1048-1048
Author(s):  
Daliah Ross ◽  
Mark E Wagshul ◽  
Meltem Izzetoglu ◽  
Roee Holtzer

Abstract Objective Greater intraindividual variability (IIV) in behavioral and cognitive performance is a risk factor for adverse outcomes but research concerning IIV in neural signal is scarce. Using functional near-infrared spectroscopy (fNIRS), we showed that IIV in oxygenated hemoglobin (HbO2) levels in the prefrontal cortex increased from single task (Single-Task-Walk–STW; Single-Task-Alpha–STA) to Dual-Task-Walk (DTW) conditions in older adults. Herein, we predicted that, consistent with the neural inefficiency hypothesis, reduced cortical thickness would be associated with greater increases in IIV in fNIRS-derived HbO2 from single tasks to DTW when adjusting for behavioral performance. Method Participants were right-handed older adults without dementia recruited from the community (N = 55; M(SD) age = 74.84(4.97); %female = 49.1). Neuroimaging included fNIRS for HbO2 levels in the prefrontal cortex during tasks and MRI for cortical thickness. IIV was operationalized using the SD of fNIRS-derived HbO2 observations assessed during a 30-s interval in each experimental condition. Results Moderation analyses, assessed through linear mixed effects models, revealed that in several frontal (p < 0.02), parietal (p < 0.02), temporal (p < 0.01), and occipital (p < 0.01) regions, thinner cortex was associated with greater increases in HbO2 IIV from the single tasks to DTW. Conclusion Reduced cortical thickness was associated with inefficient increases in IIV in fNIRS-derived HbO2 from single tasks to dual-task walking. Worse IIV in gait performance under DTW predicts adverse mobility outcomes. Reduced cortical thickness and worse IIV of fNIRS-derived HbO2 during DTW are possible brain mechanisms that explain the risk of developing mobility impairments in aging and disease populations.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6159
Author(s):  
Valeria Belluscio ◽  
Gabriele Casti ◽  
Marco Ferrari ◽  
Valentina Quaresima ◽  
Maria Sofia Sappia ◽  
...  

Increased oxygenated hemoglobin concentration of the prefrontal cortex (PFC) has been observed during linear walking, particularly when there is a high attention demand on the task, like in dual-task (DT) paradigms. Despite the knowledge that cognitive and motor demands depend on the complexity of the motor task, most studies have only focused on usual walking, while little is known for more challenging tasks, such as curved paths. To explore the relationship between cortical activation and gait biomechanics, 20 healthy young adults were asked to perform linear and curvilinear walking trajectories in single-task and DT conditions. PFC activation was assessed using functional near-infrared spectroscopy, while gait quality with four inertial measurement units. The Figure-of-8-Walk-Test was adopted as the curvilinear trajectory, with the “Serial 7s” test as concurrent cognitive task. Results show that walking along curvilinear trajectories in DT led to increased PFC activation and decreased motor performance. Under DT walking, the neural correlates of executive function and gait control tend to be modified in response to the cognitive resources imposed by the motor task. Being more representative of real-life situations, this approach to curved walking has the potential to reveal crucial information and to improve people’ s balance, safety, and life’s quality.


2019 ◽  
Vol 48 (Supplement_4) ◽  
pp. iv9-iv12
Author(s):  
Wei-Peng Teo ◽  
Timo Rantalainen ◽  
Helen Macpherson

Abstract In this study, we investigated the effects of walking during single-task and dual-task gait (STG and DTG) conditions, on left prefrontal cortex (LPFC) activation in older adults with subjective memory complaints (SMC) and Dementia. A total of 72 older adults (aged 65-94 yrs; 33 Healthy; 28 SMC; 11 Dementia) were recruited from the community and assisted living facilities. A portable 7m zeno walkway gait analysis mat was used to measure stride, velocity, length and duration during 4 passes of STG and DTG each. A portable single-channel functional near-infrared spectroscopy (fNIRS) device (Portalite, Artinis Medical Systems) was placed over the LPFC to measure changes in oxyhaemoglobin response (O2Hb) during STG and DTG. One-way analysis of variance (ANOVA) with bonferroni post-hoc t-test for multiple comparisons was used to determine differences between groups. Our results showed that stride velocity, duration and length during STG (all p<0.05) and DTG (all p<0.000) were significantly impaired in the Dementia group compared to Healthy and SMC groups, while no significant differences were observed between Healthy and SMC groups. For STG, a greater increase in O2Hb (p<0.05) was observed in the Dementia group compared to the Healthy and SMC groups, while no differences were observed between Healthy and SMC. However, a significant increase and decline in O2Hb was observed during DTG in the SMC and Dementia groups respectively, compared to Healthy. Our findings indicate an altered pattern of cerebral haemodynamic response of the PFC in people with SMC and Dementia that may be indicative of cognitive demands of gait. Our findings may have implications for the use of DTG and fNIRS as a potential early biomarker for cognitive declines in older adults.


2018 ◽  
Vol 74 (7) ◽  
pp. 1076-1083 ◽  
Author(s):  
Roee Holtzer ◽  
Meltem Izzetoglu ◽  
Michelle Chen ◽  
Cuiling Wang

Abstract Background Neural trajectories of gait are not well established. We determined two distinct, clinically relevant neural trajectories, operationalized via functional near-infrared spectroscopy (fNIRS) HbO2 measures in the prefrontal cortex (PFC), under Single-Task-Walk (STW), and Dual-Task-Walk (DTW) conditions. Course trajectory assessed neural activity associated with attention during the course of a walking task; the second trajectory assessed neural activity associated with learning over repeated walking trials. Improved neural efficiency was defined as reduced PFC HbO2 after practice. Methods Walking was assessed under STW and DTW conditions. fNIRS was utilized to quantify HbO2 in the PFC while walking. Burst measurement included three repeated trials for each experimental condition. The course of each walking task consisted of six consecutive segments. Results Eighty-three nondemented participants (mean age = 78.05 ± 6.37 years; %female = 49.5) were included. Stride velocity (estimate = −0.5259 cm/s, p = <.0001) and the rate of correct letter generation (log estimate of rate ratio = −0.0377, p < .0001) declined during the course of DTW. In contrast, stride velocity (estimate = 1.4577 cm/s, p < .0001) and the rate of correct letter generation (log estimate of rate ratio = 0.0578, p < .0001) improved over repeated DTW trials. Course and trial effects were not significant in STW. HbO2 increased during the course of DTW (estimate = 0.0454 μM, p < .0001) but declined over repeated trials (estimate = −0.1786 μM, p < .0001). HbO2 declined during the course of STW (estimate = −.0542 μM, p < .0001) but did not change significantly over repeated trials. Conclusion We provided evidence for distinct attention (course) and learning (repeated trials) trajectories and their corresponding PFC activity. Findings suggest that learning and improved PFC efficiency were demonstrated in one experimental session involving repeated DTW trials.


2020 ◽  
Vol 10 (7) ◽  
pp. 415 ◽  
Author(s):  
Roee Holtzer ◽  
Meltem Izzetoglu

The presence of Mild Cognitive Impairments (MCI) is associated with worse gait performance. However, the effect of MCI on cortical control of gait, as assessed during active walking, is unknown. We hypothesized that MCI would be associated with attenuated activations and limited improvement in efficiency in the Prefrontal cortex (PFC) under cognitively-demanding walking conditions. Functional Near-Infrared Spectroscopy (fNIRS) was used to assess Oxygenated Hemoglobin (HbO2) in the PFC during Single-Task-Walk (STW), cognitive interference (Alpha) and Dual-Task-Walk (DTW) conditions. Three repeated trials in each experimental condition were administered. Healthy control (n = 71; mean age = 76.82 ± 6.21 years; %female = 50.7) and MCI (n = 11; mean age = 78.27 ± 4.31 years; %female = 45.5) participants were included. The increase in HbO2 from STW to DTW was attenuated among MCI participants compared to controls (estimate = 0.505; p = 0.001). Whereas, among controls, HbO2 increased from Alpha to DTW, the opposite was observed among MCI participants (estimate = 0.903; p < 0.001). In DTW, the decline in HbO2 from trial 1 to 2 was attenuated in MCI participants compared to controls (estimate = 0.397; p = 0.008). Moreover, whereas HbO2 declined from trial 1 to 3 among controls, MCI participants showed the opposite trend (estimate = 0.946; p < 0.001). MCI was associated with attenuated brain activation patterns and compromised ability to improve PFC efficiency during dual-task walking.


2020 ◽  
Vol 34 (7) ◽  
pp. 589-599 ◽  
Author(s):  
Diego Orcioli-Silva ◽  
Rodrigo Vitório ◽  
Priscila Nóbrega-Sousa ◽  
Núbia Ribeiro da Conceição ◽  
Victor Spiandor Beretta ◽  
...  

Background. Although dopaminergic medication improves dual task walking in people with Parkinson disease (PD), the underlying neural mechanisms are not yet fully understood. As prefrontal cognitive resources are involved in dual task walking, evaluation of the prefrontal cortex (PFC) is required. Objective. To investigate the effect of dopaminergic medication on PFC activity and gait parameters during dual task walking in people with PD. Methods. A total of 20 individuals with PD (69.8 ± 5.9 years) and 30 healthy older people (68.0 ± 5.6 years) performed 2 walking conditions: single and dual task (walking while performing a digit vigilance task). A mobile functional near infrared spectroscopy system and an electronic sensor carpet were used to analyze PFC activation and gait parameters, respectively. Relative concentrations of oxygenated hemoglobin (HbO2) from the left and right PFC were measured. Results. People with PD in the off state did not present changes in HbO2 level in the left PFC across walking conditions. In contrast, in the on state, they presented increased HbO2 levels during dual task compared with single task. Regardless of medication state, people with PD presented increased HbO2 levels in the right PFC during dual task walking compared with single task. The control group demonstrated increased PFC activity in both hemispheres during dual task compared with single task. People with PD showed increases in both step length and velocity in the on state compared with the off state. Conclusions. PD limits the activation of the left PFC during dual task walking, and dopaminergic medication facilitates its recruitment.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013217
Author(s):  
Inbal Maidan ◽  
Roni Hacham ◽  
Ira Galperin ◽  
Nir Giladi ◽  
Roee Holtzer ◽  
...  

Background and Objectives:Functional Near-Infrared Spectroscopy (fNIRS) studies provide direct evidence to the important role of the prefrontal cortex (PFC) during walking in aging and Parkinson's disease (PD). Most studies mainly explored mean HbO2 levels, while moment-to-moment variability measures have been rarely investigated. Variability measures can inform on flexibility that is imperative for adaptive function. We hypothesized that patients with PD will show less variability in HbO2 signals during walking compared to healthy controls.Methods:206 participants, 57 healthy controls (age: 68.9±1.0 years; 27 women) and 149 idiopathic PD patients (age: 69.8±0.6 years, 50 women, disease duration: 8.27±5.51 years) performed usual walking and dual-task walking (serial 3 subtractions) with an fNIRS system placed on the forehead. HbO2 variability was calculated using the standard deviation (SD), range, and mean detrended time series of fNIRS-derived HbO2 signal evaluated during each walking task. HbO2 variability was compared between groups and between walking tasks using mixed model analyses.Results:Higher variability (SD, range, mean detrended time series) was observed during dual-task walking, compared to usual walking (p<0.025), but this was derived from the differences within the healthy control group (group X task interaction: p<0.007). On the other hand, task repetition demonstrated reduced variability in healthy controls but increased variability in patients with PD (interaction group*walk-repetition: p<0.048). The MDS-UPDRS motor score correlated with HbO2 range (r=0.142, p=0.050) and HbO2 SD (r=0.173, p=0.018) during usual walking in all participants.Discussion:In this study, we suggest a new way to interpret changes in HbO2 variability. We relate increased HbO2 variability to flexible adaptation to environmental challenges and decreased HbO2 variability to the stability of performance. Our results show that both are limited in PD however, further investigation of these concepts is required. Moreover, HbO2 variability measures are an important aspect of brain function that adds new insights into the role of PFC during walking with aging and PD.Classification of Evidence:This study provides Class III evidence that patients with PD have more variability within Hb02 signals during usual-walking, compared to healthy controls, but not during dual-task walking.


Pain Medicine ◽  
2020 ◽  
Author(s):  
Hannah Pakray ◽  
Elizabeth Seng ◽  
Meltem Izzetoglu ◽  
Roee Holtzer

Abstract Objective Pain is prevalent and functionally impactful in older adults. The prefrontal cortex is involved in pain perception, attentional control, and cortical control of locomotion. Although pain is a known moderator of attentional capacity, its moderating effect on cortical control of locomotion has not been assessed. This study aimed to examine the effects of subjective pain on changes in functional near-infrared spectroscopy–derived measurements of oxygenated hemoglobin (HbO2), gait velocity, and cognitive accuracy from single- to dual-task walking conditions among older adults. Subjects The sample consisted of 383 healthy older adults (55% female). Methods Participants completed two single tasks (Single-Task-Walk [STW] and Cognitive Interference [Alpha]) and the Dual-Task-Walk (DTW), during which participants performed the two single tasks simultaneously. The Medical Outcomes Study Pain Severity Scale and Pain Effects Scale were used to assess pain severity and interference. ProtoKinetics Movement Analysis Software was used to assess gait velocity and rate of correct letter generation to assess cognitive accuracy. Functional Near-Infrared Spectroscopy (fNIRS) was used to assess HbO2 during active walking. Results Linear mixed-effects models revealed that HbO2 increased from single- to dual-task conditions. Perceived pain presence was associated with an attenuated increase in HbO2 from Alpha to DTW. Among those with pain, worse pain severity was associated with an attenuated increase in HbO2 from STW to DTW. Pain interference did not moderate the increase in HbO2 from single to dual tasks. Pain did not have a moderating effect on behavioral outcomes. Conclusions Task-related changes in the hemodynamic response in the prefrontal cortex during walking may be a sensitive marker of the effects of subjective pain on brain function in healthy older adults.


2019 ◽  
Author(s):  
Shannon Burns ◽  
Lianne N. Barnes ◽  
Ian A. McCulloh ◽  
Munqith M. Dagher ◽  
Emily B. Falk ◽  
...  

The large majority of social neuroscience research uses WEIRD populations – participants from Western, educated, industrialized, rich, and democratic locations. This makes it difficult to claim whether neuropsychological functions are universal or culture specific. In this study, we demonstrate one approach to addressing the imbalance by using portable neuroscience equipment in a study of persuasion conducted in Jordan with an Arabic-speaking sample. Participants were shown persuasive videos on various health and safety topics while their brain activity was measured using functional near infrared spectroscopy (fNIRS). Self-reported persuasiveness ratings for each video were then recorded. Consistent with previous research conducted with American subjects, this work found that activity in the dorsomedial and ventromedial prefrontal cortex predicted how persuasive participants found the videos and how much they intended to engage in the messages’ endorsed behaviors. Further, activity in the left ventrolateral prefrontal cortex was associated with persuasiveness ratings, but only in participants for whom the message was personally relevant. Implications for these results on the understanding of the brain basis of persuasion and on future directions for neuroimaging in diverse populations are discussed.


Sign in / Sign up

Export Citation Format

Share Document