scholarly journals METABOLIC CONSEQUENCES OF METHIONINE REDOX IN METHIONINE RESTRICTION

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S106-S107
Author(s):  
Kevin Thyne ◽  
Yuhong Liu ◽  
Adam B Salmon

Abstract While caloric restriction (CR) provides highly robust improvements to longevity and health, dietary restriction of the essential amino acid methionine can provide similar benefits including improved metabolic function and increased longevity. Despite these similarities between CR and methionine restriction (MR), there is growing evidence to suggest they may be mediated by different mechanisms that require further elucidation. The sulfur side-chain of methionine is highly prone to oxidation, even in vivo, with redox changes of these residues potentially altering protein function and interfering with its use as a substrate. An entire family of enzymes, methionine sulfoxide reductases, have evolved in aerobic organisms to regulate the redox status of methionine. We tested the role of methionine sulfoxide reductase A (MsrA) in the physiological and metabolic benefits of MR. After three months of MR, mice lacking MsrA (MsrA KO) showed significant loss of weight, including both fat and lean mass, in comparison to wild-type mice under MR. Both MsrA KO and wild-type mice responded to MR with improvements to both glucose and insulin tolerance. However, MR MsrA KO mice showed lower HbA1c and reduced leptin compared to MR wild-type mice. Overall, our results show mice lacking MsrA have a stronger response to MR suggesting that methionine redox may play an important role in some of the mechanisms responsible for these metabolic outcomes. Further studies clarify whether MsrA could also be a potential regulator of the longevity benefits of MR.

2006 ◽  
Vol 281 (43) ◽  
pp. 32668-32675 ◽  
Author(s):  
Nathan Brot ◽  
Jean-François Collet ◽  
Lynnette C. Johnson ◽  
Thomas J. Jönsson ◽  
Herbert Weissbach ◽  
...  

The PilB protein from Neisseria gonorrhoeae is located in the periplasm and made up of three domains. The N-terminal, thioredoxin-like domain (NT domain) is fused to tandem methionine sulfoxide reductase A and B domains (MsrA/B). We show that the α domain of Escherichia coli DsbD is able to reduce the oxidized NT domain, which suggests that DsbD in Neisseria can transfer electrons from the cytoplasmic thioredoxin to the periplasm for the reduction of the MsrA/B domains. An analysis of the available complete genomes provides further evidence for this proposition in other bacteria where DsbD/CcdA, Trx, MsrA, and MsrB gene homologs are all located in a gene cluster with a common transcriptional direction. An examination of wild-type PilB and a panel of Cys to Ser mutants of the full-length protein and the individually expressed domains have also shown that the NT domain more efficiently reduces the MsrA/B domains when in the polyprotein context. Within this frame-work there does not appear to be a preference for the NT domain to reduce the proximal MsrA domain over MsrB domain. Finally, we report the 1.6Å crystal structure of the NT domain. This structure confirms the presence of a surface loop that makes it different from other membrane-tethered, Trx-like molecules, including TlpA, CcmG, and ResA. Subtle differences are observed in this loop when compared with the Neisseria meningitidis NT domain structure. The data taken together supports the formation of specific NT domain interactions with the MsrA/B domains and its in vivo recycling partner, DsbD.


2016 ◽  
Vol 310 (6) ◽  
pp. E388-E393 ◽  
Author(s):  
Jackob Moskovitz ◽  
Fang Du ◽  
Connor F. Bowman ◽  
Shirley S. Yan

Accumulation of oxidized proteins, and especially β-amyloid (Aβ), is thought to be one of the common causes of Alzheimer's disease (AD). The current studies determine the effect of an in vivo methionine sulfoxidation of Aβ through ablation of the methionine sulfoxide reductase A (MsrA) in a mouse model of AD, a mouse that overexpresses amyloid precursor protein (APP) and Aβ in neurons. Lack of MsrA fosters the formation of methionine sulfoxide in proteins, and thus its ablation in the AD-mouse model will increase the formation of methionine sulfoxide in Aβ. Indeed, the novel MsrA-deficient APP mice ( APP+/ MsrAKO) exhibited higher levels of soluble Aβ in brain compared with APP+ mice. Furthermore, mitochondrial respiration and the activity of cytochrome c oxidase were compromised in the APP+/ MsrAKO compared with control mice. These results suggest that lower MsrA activity modifies Aβ solubility properties and causes mitochondrial dysfunction, and augmenting its activity may be beneficial in delaying AD progression.


Author(s):  
Méry Marimoutou ◽  
Danielle A. Springer ◽  
Chengyu Liu ◽  
Geumsoo Kim ◽  
Rodney Levine

Methionine 77 in calmodulin can be stereospecifically oxidized to methionine sulfoxide by mammalian methionine sulfoxide reductase A. Whether this has in vivo significance is unknown. We therefore created a mutant mouse in which wild-type calmodulin-1 was replaced by a calmodulin containing a mimic of methionine sulfoxide at residue 77. Total calmodulin levels were unchanged in the homozygous M77Q mutant, which is viable and fertile. No differences were observed on learning tests, including the Morris water maze and associative learning. Cardiac stress test results were also the same for mutant and wild type mice. .However, young male and female mice were 20% smaller than wild type mice, although food intake was normal for their weight. Young M77Q mice were notably more active and exploratory than wild type mice. This behavior difference was objectively documented on the treadmill and open field tests. The mutant mice ran 20% longer on the treadmill than controls, and in the open field test, the mutant mice explored more than controls and exhibited reduced anxiety These phenotypic differences bore a similarity to those observed in mice lacking calcium/calmodulin kinase Iiα (CaMKIIα). We then showed that M77Q calmodulin was less effective in activating CaMKIIα than wild type calmodulin. Thus, characterization of the phenotype of a mouse expressing a constitutively active mimic of calmodulin led to the identification of the first calmodulin target that can be differentially regulated by the oxidation state of Met77. We conclude that reversible oxidation of methionine 77 in calmodulin by MSRA can regulate cellular function.


2021 ◽  
Author(s):  
Kevin M. Thyne ◽  
Adam B. Salmon

Abstract Methionine restriction (MR) extends lifespan and improves several markers of health in rodents. However, the proximate mechanisms of MR on these physiological benefits have not been fully elucidated. The essential amino acid methionine plays numerous biological roles and limiting its availability in the diet directly modulates methionine metabolism. There is growing evidence that redox regulation of methionine has regulatory control on some aspects of cellular function but interactions with MR remain largely unexplored. We tested the functional role of the ubiquitously expressed methionine repair enzyme methionine sulfoxide reductase A (MsrA) on the metabolic benefits of MR in mice. MsrA catalytically reduces both free and protein-bound oxidized methionine, thus playing a key role in its redox state. We tested the extent to which MsrA is required for metabolic effects of MR in adult mice using mice lacking MsrA. As expected, MR in control mice reduced body weight, altered body composition, and improved glucose metabolism. Interestingly, lack of MsrA did not impair the metabolic effects of MR on these outcomes. Moreover, females had blunted MR responses regardless of MsrA status compared to males. Overall, our data suggests that MsrA is not required for the metabolic benefits of MR in adult mice.


Antioxidants ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 140 ◽  
Author(s):  
Méry Marimoutou ◽  
Danielle Springer ◽  
Chengyu Liu ◽  
Geumsoo Kim ◽  
Rodney Levine

Methionine 77 in calmodulin can be stereospecifically oxidized to methionine sulfoxide by mammalian methionine sulfoxide reductase A. Whether this has in vivo significance is unknown. We therefore created a mutant mouse in which wild type calmodulin-1 was replaced by a calmodulin containing a mimic of methionine sulfoxide at residue 77. Total calmodulin levels were unchanged in the homozygous M77Q mutant, which is viable and fertile. No differences were observed on learning tests, including the Morris water maze and associative learning. Cardiac stress test results were also the same for mutant and wild type mice. However, young male and female mice were 20% smaller than wild type mice, although food intake was normal for their weight. Young M77Q mice were notably more active and exploratory than wild type mice. This behavior difference was objectively documented on the treadmill and open field tests. The mutant mice ran 20% longer on the treadmill than controls and in the open field test, the mutant mice explored more than controls and exhibited reduced anxiety. These phenotypic differences bore a similarity to those observed in mice lacking calcium/calmodulin kinase IIα (CaMKIIα). We then showed that MetO77 calmodulin was less effective in activating CaMKIIα than wild type calmodulin. Thus, characterization of the phenotype of a mouse expressing a constitutively active mimic of calmodulin led to the identification of the first calmodulin target that can be differentially regulated by the oxidation state of Met77. We conclude that reversible oxidation of methionine 77 in calmodulin by MSRA has the potential to regulate cellular function.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 155 ◽  
Author(s):  
Lindsay Bruce ◽  
Diana Singkornrat ◽  
Kelsey Wilson ◽  
William Hausman ◽  
Kelli Robbins ◽  
...  

The deleterious alteration of protein structure and function due to the oxidation of methionine residues has been studied extensively in age-associated neurodegenerative disorders such as Alzheimer’s and Parkinson’s Disease. Methionine sulfoxide reductases (MSR) have three well-characterized biological functions. The most commonly studied function is the reduction of oxidized methionine residues back into functional methionine thus, often restoring biological function to proteins. Previous studies have successfully overexpressed and silenced MSR activity in numerous model organisms correlating its activity to longevity and oxidative stress. In the present study, we have characterized in vivo effects of MSR deficiency in Drosophila. Interestingly, we found no significant phenotype in animals lacking either methionine sulfoxide reductase A (MSRA) or methionine sulfoxide reductase B (MSRB). However, Drosophila lacking any known MSR activity exhibited a prolonged larval third instar development and a shortened lifespan. These data suggest an essential role of MSR in key biological processes.


2004 ◽  
Vol 186 (11) ◽  
pp. 3590-3598 ◽  
Author(s):  
T. Douglas ◽  
D. S. Daniel ◽  
B. K. Parida ◽  
C. Jagannath ◽  
S. Dhandayuthapani

ABSTRACT Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme which reduces oxidized methionine to methionine. Since oxidation of methionine in proteins impairs their function, an absence of MsrA leads to abnormalities in different organisms, including alterations in the adherence patterns and in vivo survival of certain pathogenic bacteria. To understand the role of MsrA in intracellular survival of bacteria, we disrupted the gene encoding MsrA in Mycobacterium smegmatis through homologous recombination. The msrA mutant strain of M. smegmatis exhibited significantly reduced intracellular survival in murine J774A.1 macrophages compared to the survival of its wild-type counterpart. Furthermore, immunofluorescence and immnunoblotting of phagosomes containing M. smegmatis strains revealed that the phagosomes with the msrA mutant strain acquired both p67phox of phagocyte NADPH oxidase and inducible nitric oxide synthase much earlier than the phagosomes with the wild-type strain. In addition, the msrA mutant strain of M. smegmatis was observed to be more sensitive to hydroperoxides than the wild-type strain was in vitro. These results suggest that MsrA plays an important role in both extracellular and intracellular survival of M. smegmatis.


2008 ◽  
Vol 77 (3) ◽  
pp. 1091-1102 ◽  
Author(s):  
Hong Wu ◽  
Ángel A. Soler-García ◽  
Ann E. Jerse

ABSTRACT The hallmark of gonorrhea is an intense inflammatory response that is characterized by polymorphonuclear leukocytes (PMNs) with intracellular gonococci. A redundancy of defenses may protect Neisseria gonorrhoeae from phagocyte-derived reactive oxygen species. Here we showed that a gonococcal catalase (kat) mutant in strain MS11 was more sensitive to H2O2 than mutants in cytochrome c peroxidase (ccp), methionine sulfoxide reductase (msrA), or the metal-binding protein (mntC) of the MntABC transporter. kat ccp and kat ccp mntC mutants were significantly more sensitive to H2O2 than mutants in any single factor. None of the mutants showed increased susceptibility to murine PMNs. Recovery of the mntC and kat ccp mntC mutants from the lower genital tract of BALB/c mice, but not the kat or kat ccp mutants, was significantly reduced relative to wild-type bacteria. Interestingly, unlike the MS11 kat mutant, a kat mutant of strain FA1090 was attenuated during competitive infection with wild-type FA1090 bacteria. The FA1090 kat mutant and MS11 mntC mutant were also attenuated in mice that are unable to generate a phagocytic respiratory burst. We conclude that inactivation of three well-characterized antioxidant genes (kat, ccp, and mntC) does not increase gonococcal susceptibility to the phagocytic respiratory burst during infection and that gonococcal catalase and the MntC protein confer an unidentified advantage in vivo. In the case of catalase, this advantage is strain specific. Finally, we also showed that an msrA mutant of strain MS11 demonstrated delayed attenuation in BALB/c but not C57BL/6 mice. Therefore, MsrA/B also appears to play a role in infection that is dependent on host genetic background.


2015 ◽  
Vol 22 (1) ◽  
pp. 48-62 ◽  
Author(s):  
Alicia N. Minniti ◽  
Macarena S. Arrazola ◽  
Marcela Bravo-Zehnder ◽  
Francisca Ramos ◽  
Nibaldo C. Inestrosa ◽  
...  

1998 ◽  
Vol 180 (10) ◽  
pp. 2694-2700 ◽  
Author(s):  
Christopher S. Hayes ◽  
Berenice Illades-Aguiar ◽  
Lilliam Casillas-Martinez ◽  
Peter Setlow

ABSTRACT Methionine residues in α/β-type small, acid-soluble spore proteins (SASP) of Bacillus species were readily oxidized to methionine sulfoxide in vitro by t-butyl hydroperoxide (tBHP) or hydrogen peroxide (H2O2). These oxidized α/β-type SASP no longer bound to DNA effectively, but DNA binding protected α/β-type SASP against methionine oxidation by peroxides in vitro. Incubation of an oxidized α/β-type SASP with peptidyl methionine sulfoxide reductase (MsrA), which can reduce methionine sulfoxide residues back to methionine, restored the α/β-type SASP’s ability to bind to DNA. Both tBHP and H2O2 caused some oxidation of the two methionine residues of an α/β-type SASP (SspC) in spores ofBacillus subtilis, although one methionine which is highly conserved in α/β-type SASP was only oxidized to a small degree. However, much more methionine sulfoxide was generated by peroxide treatment of spores carrying a mutant form of SspC which has a lower affinity for DNA. MsrA activity was present in wild-type B. subtilis spores. However, msrA mutant spores were no more sensitive to H2O2 than were wild-type spores. The major mechanism operating for dealing with oxidative damage to α/β-type SASP in spores is DNA binding, which protects the protein’s methionine residues from oxidation both in vitro and in vivo. This may be important in vivo since α/β-type SASP containing oxidized methionine residues no longer bind DNA well and α/β-type SASP-DNA binding is essential for long-term spore survival.


Sign in / Sign up

Export Citation Format

Share Document