Robust deep learning seismic inversion with a priori initial model constraint
Summary Seismic inversion is one of the most commonly used methods in the oil and gas industry for reservoir characterization from observed seismic data. Deep learning (DL) is emerging as a data-driven approach that can effectively solve the inverse problem. However, existing deep learning-based methods for seismic inversion utilize only seismic data as input, which often leads to poor stability of the inversion results. Besides, it has always been challenging to train a robust network since the real survey has limited labeled data pairs. To partially overcome these issues, we develop a neural network framework with a priori initial model constraint to perform seismic inversion. Our network uses two parts as one input for training. One is the seismic data, and the other is the subsurface background model. The labels for each input are the actual model. The proposed method is performed by log-to-log strategy. The training dataset is firstly generated based on forward modeling. The network is then pre-trained using the synthetic training dataset, which is further validated using synthetic data that has not been used in the training step. After obtaining the pre-trained network, we introduce the transfer learning strategy to fine-tune the pre-trained network using labeled data pairs from a real survey to acquire better inversion results in the real survey. The validity of the proposed framework is demonstrated using synthetic 2D data including both post-stack and pre-stack examples, as well as a real 3D post-stack seismic data set from the western Canadian sedimentary basin.