scholarly journals Dimensionality Reduction Techniques For Hyperspectral Image using Deep Learning

This Research proposal addresses the issues of dimension reduction algorithms in Deep Learning(DL) for Hyperspectral Imaging (HSI) classification, to reduce the size of training dataset and for feature extraction ICA(Independent Component Analysis) are adopted. The proposed algorithm evaluated uses real HSI data set. It shows that ICA gives the most optimistic presentation it shrinks off the feature occupying a small portion of all pixels distinguished from the noisy bands based on non Gaussian assumption of independent sources. In turn, finding the independent components to address the challenge. A new approach DL based method is adopted, that has greater attention in the research field of HSI. DL based method is evaluated by a sequence prediction architecture that includes a recurrent neural network the LSTM architecture. It includes CNN layers for feature extraction of input datasets that have better accuracy with minimum computational cost

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Hua Zheng ◽  
Zhenglong Wu ◽  
Shiqiang Duan ◽  
Jiangtao Zhou

Due to the inevitable deviations between the results of theoretical calculations and physical experiments, flutter tests and flutter signal analysis often play significant roles in designing the aeroelasticity of a new aircraft. The measured structural response from aeroelastic models in both wind tunnel tests and real fight flutter tests contain an abundance of structural information, but traditional methods tend to have limited ability to extract features of concern. Inspired by deep learning concepts, a novel feature extraction method for flutter signal analysis was established in this study by combining the convolutional neural network (CNN) with empirical mode decomposition (EMD). It is widely hypothesized that when flutter occurs, the measured structural signals are harmonic or divergent in the time domain, and that the flutter modal (1) is singular and (2) its energy increases significantly in the frequency domain. A measured-signal feature extraction and flutter criterion framework was constructed accordingly. The measured signals from a wind tunnel test were manually labeled “flutter” and “no-flutter” as the foundational dataset for the deep learning algorithm. After the normalized preprocessing, the intrinsic mode functions (IMFs) of the flutter test signals are obtained by the EMD method. The IMFs are then reshaped to make them the suitable size to be input to the CNN. The CNN parameters are optimized though the training dataset, and the trained model is validated through the test dataset (i.e., cross-validation). The accuracy rate of the proposed method reached 100% on the test dataset. The training model appears to effectively distinguish whether or not the structural response signal contains flutter. The combination of EMD and CNN provides effective feature extraction of time series signals in flutter test data. This research explores the connection between structural response signals and flutter from the perspective of artificial intelligence. The method allows for real-time, online prediction with low computational complexity.


Author(s):  
Jakub Gęca

The consequences of failures and unscheduled maintenance are the reasons why engineers have been trying to increase the reliability of industrial equipment for years. In modern solutions, predictive maintenance is a frequently used method. It allows to forecast failures and alert about their possibility. This paper presents a summary of the machine learning algorithms that can be used in predictive maintenance and comparison of their performance. The analysis was made on the basis of data set from Microsoft Azure AI Gallery. The paper presents a comprehensive approach to the issue including feature engineering, preprocessing, dimensionality reduction techniques, as well as tuning of model parameters in order to obtain the highest possible performance. The conducted research allowed to conclude that in the analysed case , the best algorithm achieved 99.92% accuracy out of over 122 thousand test data records. In conclusion, predictive maintenance based on machine learning represents the future of machine reliability in industry.


2019 ◽  
Vol 9 (19) ◽  
pp. 4036 ◽  
Author(s):  
You ◽  
Wu ◽  
Lee ◽  
Liu

Multi-class classification is a very important technique in engineering applications, e.g., mechanical systems, mechanics and design innovations, applied materials in nanotechnologies, etc. A large amount of research is done for single-label classification where objects are associated with a single category. However, in many application domains, an object can belong to two or more categories, and multi-label classification is needed. Traditionally, statistical methods were used; recently, machine learning techniques, in particular neural networks, have been proposed to solve the multi-class classification problem. In this paper, we develop radial basis function (RBF)-based neural network schemes for single-label and multi-label classification, respectively. The number of hidden nodes and the parameters involved with the basis functions are determined automatically by applying an iterative self-constructing clustering algorithm to the given training dataset, and biases and weights are derived optimally by least squares. Dimensionality reduction techniques are adopted and integrated to help reduce the overfitting problem associated with the RBF networks. Experimental results from benchmark datasets are presented to show the effectiveness of the proposed schemes.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6762
Author(s):  
Jung Hyuk Lee ◽  
Geon Woo Lee ◽  
Guiyoung Bong ◽  
Hee Jeong Yoo ◽  
Hong Kook Kim

Autism spectrum disorder (ASD) is a developmental disorder with a life-span disability. While diagnostic instruments have been developed and qualified based on the accuracy of the discrimination of children with ASD from typical development (TD) children, the stability of such procedures can be disrupted by limitations pertaining to time expenses and the subjectivity of clinicians. Consequently, automated diagnostic methods have been developed for acquiring objective measures of autism, and in various fields of research, vocal characteristics have not only been reported as distinctive characteristics by clinicians, but have also shown promising performance in several studies utilizing deep learning models based on the automated discrimination of children with ASD from children with TD. However, difficulties still exist in terms of the characteristics of the data, the complexity of the analysis, and the lack of arranged data caused by the low accessibility for diagnosis and the need to secure anonymity. In order to address these issues, we introduce a pre-trained feature extraction auto-encoder model and a joint optimization scheme, which can achieve robustness for widely distributed and unrefined data using a deep-learning-based method for the detection of autism that utilizes various models. By adopting this auto-encoder-based feature extraction and joint optimization in the extended version of the Geneva minimalistic acoustic parameter set (eGeMAPS) speech feature data set, we acquire improved performance in the detection of ASD in infants compared to the raw data set.


2021 ◽  
Author(s):  
Mahdi Marsousi

The Sparse representation research field and applications have been rapidly growing during the past 15 years. The use of overcomplete dictionaries in sparse representation has gathered extensive attraction. Sparse representation was followed by the concept of adapting dictionaries to the input data (dictionary learning). The K-SVD is a well-known dictionary learning approach and is widely used in different applications. In this thesis, a novel enhancement to the K-SVD algorithm is proposed which creates a learnt dictionary with a specific number of atoms adapted for the input data set. To increase the efficiency of the orthogonal matching pursuit (OMP) method, a new sparse representation method is proposed which applies a multi-stage strategy to reduce computational cost. A new phase included DCT (PI-DCT) dictionary is also proposed which significantly reduces the blocking artifact problem of using the conventional DCT. The accuracy and efficiency of the proposed methods are then compared with recent approaches that demonstrate the promising performance of the methods proposed in this thesis.


2021 ◽  
Vol 13 (18) ◽  
pp. 3691
Author(s):  
Fei Yang ◽  
Meng Wang

Heat waves may negatively impact the economy and human life under global warming. The use of air conditioners can reduce the vulnerability of humans to heat wave disasters. However, air conditioner usage has been not clear until now. Traditional registration investigation methods are cumbersome and require expensive labor and time. This study used a Labelme image tagging tool and an available street view images database to firstly establish a monographic dataset to detect external air conditioner unit features and proposed two deep learning algorithms of Mask-RCNN and YOLOv5 to automatically retrieve air conditioners. The training dataset used street view images in the 2nd Ring Road area of downtown Beijing. The model evaluation mAP of Mask-RCNN and YOLOv5 reached 0.99 and 0.9428. In comparison, the performance of YOLOv5 was superior, which is attributed to the YOLOv5 model being better at detecting smaller target entities equipped with a lighter network structure and an enhanced feature extraction network. We demonstrated the feasibility of using street view images to retrieve air conditioners and showed their great potential to detect air conditioners in the future.


2020 ◽  
Vol 12 (2) ◽  
pp. 280 ◽  
Author(s):  
Liqin Liu ◽  
Zhenwei Shi ◽  
Bin Pan ◽  
Ning Zhang ◽  
Huanlin Luo ◽  
...  

In recent years, deep learning technology has been widely used in the field of hyperspectral image classification and achieved good performance. However, deep learning networks need a large amount of training samples, which conflicts with the limited labeled samples of hyperspectral images. Traditional deep networks usually construct each pixel as a subject, ignoring the integrity of the hyperspectral data and the methods based on feature extraction are likely to lose the edge information which plays a crucial role in the pixel-level classification. To overcome the limit of annotation samples, we propose a new three-channel image build method (virtual RGB image) by which the trained networks on natural images are used to extract the spatial features. Through the trained network, the hyperspectral data are disposed as a whole. Meanwhile, we propose a multiscale feature fusion method to combine both the detailed and semantic characteristics, thus promoting the accuracy of classification. Experiments show that the proposed method can achieve ideal results better than the state-of-art methods. In addition, the virtual RGB image can be extended to other hyperspectral processing methods that need to use three-channel images.


2017 ◽  
Vol 54 (10) ◽  
pp. 101001 ◽  
Author(s):  
黄 鸿 Huang Hong ◽  
何 凯 He Kai ◽  
郑新磊 Zheng Xinlei ◽  
石光耀 Shi Guangyao

2017 ◽  
Vol 10 (13) ◽  
pp. 355 ◽  
Author(s):  
Reshma Remesh ◽  
Pattabiraman. V

Dimensionality reduction techniques are used to reduce the complexity for analysis of high dimensional data sets. The raw input data set may have large dimensions and it might consume time and lead to wrong predictions if unnecessary data attributes are been considered for analysis. So using dimensionality reduction techniques one can reduce the dimensions of input data towards accurate prediction with less cost. In this paper the different machine learning approaches used for dimensionality reductions such as PCA, SVD, LDA, Kernel Principal Component Analysis and Artificial Neural Network  have been studied.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1606
Author(s):  
Daniela Onita ◽  
Adriana Birlutiu ◽  
Liviu P. Dinu

Images and text represent types of content that are used together for conveying a message. The process of mapping images to text can provide very useful information and can be included in many applications from the medical domain, applications for blind people, social networking, etc. In this paper, we investigate an approach for mapping images to text using a Kernel Ridge Regression model. We considered two types of features: simple RGB pixel-value features and image features extracted with deep-learning approaches. We investigated several neural network architectures for image feature extraction: VGG16, Inception V3, ResNet50, Xception. The experimental evaluation was performed on three data sets from different domains. The texts associated with images represent objective descriptions for two of the three data sets and subjective descriptions for the other data set. The experimental results show that the more complex deep-learning approaches that were used for feature extraction perform better than simple RGB pixel-value approaches. Moreover, the ResNet50 network architecture performs best in comparison to the other three deep network architectures considered for extracting image features. The model error obtained using the ResNet50 network is less by approx. 0.30 than other neural network architectures. We extracted natural language descriptors of images and we made a comparison between original and generated descriptive words. Furthermore, we investigated if there is a difference in performance between the type of text associated with the images: subjective or objective. The proposed model generated more similar descriptions to the original ones for the data set containing objective descriptions whose vocabulary is simpler, bigger and clearer.


Sign in / Sign up

Export Citation Format

Share Document