scholarly journals Deformation associated with sliver transport in Costa Rica: seismic and geodetic observations of the July 2016 Bijagua earthquake sequence

2019 ◽  
Vol 220 (1) ◽  
pp. 585-597 ◽  
Author(s):  
Maria C Araya ◽  
Juliet Biggs

SUMMARY Tectonic slivers form in the overriding plate in regions of oblique subduction. The inner boundaries of the sliver are often poorly defined and can consist of well-defined faults, rotating blocks or diffuse fault systems, which pass through or near the volcanic arc. The Guanacaste Volcanic Arc Sliver (GVAS) as defined by Montero et al., is a segment of the Central American Forearc Sliver, whose inner boundary is the ∼87-km-long Haciendas-Chiripa fault system (HCFS), which is located ∼10 km behind the volcanic arc and consists of strike slip faults and pull apart steps. We characterize the current ground motion on this boundary by combining earthquake locations and focal mechanisms of the 2016 Bijagua earthquake sequence, with the surface ground deformation obtained from Interferometric Synthetic Aperture Radar (InSAR) images from the ALOS-2 satellite. The coseismic stack of interferograms show ∼6 cm of displacement towards the line of sight of the satellite between the Caño Negro fault and the Upala fault, indicating uplift or SE horizontal surface displacement. The largest recorded earthquake of the sequence was Mw 5.4, and the observed deformation is one of the smallest earthquakes yet detected by InSAR in the Central American region. Forward and inverse models show the surface deformation can be partially explained by slip on a single fault, but it can be better explained by slip along two faults linked at depth. The best-fitting model consists of 0.33 m of right lateral slip on the Caño Negro fault and 0.35 m of reverse slip on the Upala fault, forming a positive flower structure. As no reverse seismicity was recorded, we infer the slip on the Upala fault occurred aseismically. Observations of the Bijagua earthquake sequence suggests the forearc sliver boundary is a complex and diffuse fault system. There are localized zones of transpression and transtension and areas where there is no surface expression suggesting the fault system is not yet mature. Although aseismic slip is common on subduction interfaces and mature strike-slip faults, this is the first study to document aseismic slip on a continental tectonic sliver boundary fault.

1995 ◽  
Vol 85 (3) ◽  
pp. 705-715
Author(s):  
Mark Andrew Tinker ◽  
Susan L. Beck

Abstract Regional distance surface waves are used to study the source parameters for moderate-size aftershocks of the 25 April 1992 Petrolia earthquake sequence. The Cascadia subduction zone had been relatively seismically inactive until the onset of the mainshock (Ms = 7.1). This underthrusting event establishes that the southern end of the North America-Gorda plate boundary is seismogenic. It was followed by two separate and distinct large aftershocks (Ms = 6.6 for both) occurring at 07:41 and 11:41 on 26 April, as well as thousands of other small aftershocks. Many of the aftershocks following the second large aftershock had magnitudes in the range of 4.0 to 5.5. Using intermediate-period surface-wave spectra, we estimate focal mechanisms and depths for one foreshock and six of the larger aftershocks (Md = 4.0 to 5.5). These seven events can be separated into two groups based on temporal, spatial, and principal stress orientation characteristics. Within two days of the mainshock, four aftershocks (Md = 4 to 5) occurred within 4 hr of each other that were located offshore and along the Mendocino fault. These four aftershocks comprise one group. They are shallow, thrust events with northeast-trending P axes. We interpret these aftershocks to represent internal compression within the North American accretionary prism as a result of Gorda plate subduction. The other three events compose the second group. The shallow, strike-slip mechanism determined for the 8 March foreshock (Md = 5.3) may reflect the right-lateral strike-slip motion associated with the interaction between the northern terminus of the San Andreas fault system and the eastern terminus of the Mendocino fault. The 10 May aftershock (Md = 4.1), located on the coast and north of the Mendocino triple junction, has a thrust fault focal mechanism. This event is shallow and probably occurred within the accretionary wedge on an imbricate thrust. A normal fault focal mechanism is obtained for the 5 June aftershock (Md = 4.8), located offshore and just north of the Mendocino fault. This event exhibits a large component of normal motion, representing internal failure within a rebounding accretionary wedge. These two aftershocks and the foreshock have dissimilar locations in space and time, but they do share a north-northwest oriented P axis.


Author(s):  
M. Ali ◽  
M. I. Shahzad ◽  
M. Nazeer ◽  
J. H. Kazmi

Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.


2018 ◽  
Vol 10 (11) ◽  
pp. 1715 ◽  
Author(s):  
Magali Barba-Sevilla ◽  
Bridger Baird ◽  
Abbie Liel ◽  
Kristy Tiampo

The Cushing Hub in Oklahoma, one of the largest oil storage facilities in the world, is federally designated as critical national infrastructure. In 2014, the formerly aseismic city of Cushing experienced a Mw 4.0 and 4.3 induced earthquake sequence due to wastewater injection. Since then, an M4+ earthquake sequence has occurred annually (October 2014, September 2015, November 2016). Thus far, damage to critical infrastructure has been minimal; however, a larger earthquake could pose significant risk to the Cushing Hub. In addition to inducing earthquakes, wastewater injection also threatens the Cushing Hub through gradual surface uplift. To characterize the impact of wastewater injection on critical infrastructure, we use Differential Interferometric Synthetic Aperture Radar (DInSAR), a satellite radar technique, to observe ground surface displacement in Cushing before and during the induced Mw 5.0 event. Here, we process interferograms of Single Look Complex (SLC) radar data from the European Space Agency (ESA) Sentinel-1A satellite. The preearthquake interferograms are used to create a time series of cumulative surface displacement, while the coseismic interferograms are used to invert for earthquake source characteristics. The time series of surface displacement reveals 4–5.5 cm of uplift across Cushing over 17 months. The coseismic interferogram inversion suggests that the 2016 Mw 5.0 earthquake is shallower than estimated from seismic inversions alone. This shallower source depth should be taken into account in future hazard assessments for regional infrastructure. In addition, monitoring of surface deformation near wastewater injection wells can be used to characterize the subsurface dynamics and implement measures to mitigate damage to critical installations.


2020 ◽  
Vol 110 (5) ◽  
pp. 2216-2224
Author(s):  
Megan Zecevic ◽  
Thomas S. Eyre ◽  
David W. Eaton

ABSTRACT Using geodetic methods, significant static ground deformation has been observed for many large natural earthquakes. Some of the largest earthquakes induced by hydraulic-fracturing operations have been observed in the Western Canada Sedimentary Basin; however, because of the size and depths of these events, the associated static ground deformations have not yet been observed using traditional geodetic techniques. A seismic processing technique, developed for small volcano-seismic events, has the potential to resolve micrometer-scale static displacements using broadband seismic data. In this study, we test this processing method using vertical component broadband recordings of an Mw 4.1 event acquired at four nearby broadband seismometers. Estimated static displacements at the four stations are compared with the theoretical surface displacement field for a dislocation on a finite rectangular source within a homogeneous, elastic half-space. The theoretical displacements have the same polarities as the measured displacements across the seismic network and have similar amplitudes for three of the four stations. However, one station yielded unstable results, which shows that care must be taken when using this method. These results suggest that this processing method has potential for obtaining surface deformation for small to moderate-sized earthquakes using broadband data.


2020 ◽  
Vol 91 (4) ◽  
pp. 1998-2009 ◽  
Author(s):  
Kang Wang ◽  
Roland Bürgmann

Abstract The 2019 Ridgecrest earthquake sequence ruptured a series of conjugate faults in the broad eastern California shear zone, north of the Mojave Desert in southern California. The average spacing between Global Navigation Satellite System (GNSS) stations around the earthquakes is 20–30 km, insufficient to constrain the rupture details of the earthquakes. Here, we use Sentinel-1 and COSMO-SkyMed (CSK) Synthetic Aperture Radar data to derive the high-resolution coseismic and early postseismic surface deformation related to the Ridgecrest earthquake sequence. Line of sight (LoS) Interferometric Synthetic Aperture Radar displacements derived from both Sentinel-1 and CSK data are in good agreement with GNSS measurements. The maximum coseismic displacement occurs near the Mw 7.1 epicenter, with an estimated fault offset of ∼4.5  m on a northwest-striking rupture. Pixel tracking analysis of CSK data also reveals a sharp surface offset of ∼1 m on a second northwest-striking fault strand on which the Mw 6.4 foreshock likely nucleated, which is located ∼2–3  km east of the major rupture. The lack of clear surface displacement across this fault segment during the Mw 6.4 event suggests this fault might have ruptured twice, with more pronounced and shallow slip during the Mw 7.1 mainshock. Both Sentinel-1 and CSK data reveal clear postseismic deformation following the 2019 Ridgecrest earthquake sequence. Cumulative postseismic deformation near the Mw 7.1 epicenter ∼2 months after the mainshock reaches ∼5  cm along the satellites’ LoSs. The observed postseismic deformation near the fault is indicative of both afterslip and poroelastic rebound. We provide data derived in this study in various data formats, which will be useful for the broad community studying this earthquake sequence.


Author(s):  
Lars Ottemöller ◽  
Won-Young Kim ◽  
Felix Waldhauser ◽  
Norunn Tjåland ◽  
Winfried Dallmann

Abstract An earthquake sequence in the Storfjorden offshore area southwest of Spitsbergen in the Svalbard archipelago initiated with a 21 February 2008 magnitude Mw 6.1 event. This area had previously not produced any significant earthquakes, but between 2008 and 2020, a total of ∼2800 earthquakes were detected, with ∼16 of them being of moderate size (ML≥4.0). Applying double-difference relocation to improve relative locations reveals that the activity is linked to several subparallel faults striking southwest–northeast that extend across the entire crust. The southwest–northeast trend is also found as a possible fault plane from regional moment tensor inversion. The solutions range from oblique normal in the center of the cluster to pure strike slip farther away and are consistent with the compressional σ1 axis roughly in the east–west direction and plunging 57°, and the extensional σ3 axis subhorizontal trending north–south. The mainshock fault is steeply dipping to the southeast, but several other faults appear to be near vertical. The existence of oblique, right-lateral strike-slip motion on southwest–northeast-trending faults with a normal component and pure normal faulting events in between suggests transtensional tectonics that in and around Storfjorden result in activation of a complex fault system.


2020 ◽  
Author(s):  
Marc Regnier ◽  
Gabriela Ponce ◽  
Marianne Saillard ◽  
Laurence Audin ◽  
Sandro Vaca ◽  
...  

<p>Along the Ecuadorian margin, the North Andean Sliver is moving in the northeastward direction due to the oblique subduction of the Nazca plate. The opening of the gulf of Guayaquil is a consequence of this motion. Two principal models compete to explain the opening. One proposes an opening achieved essentially with strike-slip motion along a single major fault through the gulf, the other with a combination of strike-slip and normal faulting on both sides of the gulf. The consequences in term of seismic hazard are very different. A single strike-slip fault model could imply a long fault segment capable of generating large magnitude events. In contrast, a multi-segments composite fault system will give conditions for producing small to medium size earthquakes. The southern Ecuador subduction zone is characterized by the absence of large historical earthquake. Data from the historical and instrumental seismicity for magnitude above 4 show the forearc has a high level of moderate seismic activity within and around the gulf that connects to the crustal seismic activity of the volcanic arc. In contrast, the forearc elsewhere shows very little or no seismic activity between the marine forearc zone and the volcanic arc. Regional and global CMTS data show a large number of mechanisms within the gulf that do not line up on a simple straight fault system. We present new earthquake data from the recently upgraded national seismic network of Ecuador. They provide the first image of SW-NE trending crustal faults stretching in the central part of the gulf and running eastward south of the Puna island. The main seismic belt appears to be discontinuous, made of short length segments with variable trends. The variety of focal solutions also indicates complex faulting. As the shape of this seismic belt is in good agreement with the orientation of the GPS velocity vectors, this new fault zone is readily interpreted as the southernmost segment of the actual NAS boundary. Others seismic clusters are observed parallel to the northern coast of the gulf, indicating active structures eventually accommodating the North-South opening of the gulf through normal faulting. b-value analysis of the main seismic belt seismicity shows high b value (>1) indicating either highly fractured or heterogeneous medium, or/and low stress level within the gulf of Guayaquil. This is again in agreement with a multi-segmented faulting system and also with the lack of large magnitude event in the historical seismic data. A cross-section for the entire seismic belt shows a depth extend of the crustal seismic activity down to 30 km which confirms the seismic belt to be a sliver boundary.</p>


2020 ◽  
Vol 12 (23) ◽  
pp. 3883
Author(s):  
Chenglong Li ◽  
Guohong Zhang ◽  
Xinjian Shan ◽  
Dezheng Zhao ◽  
Yanchuan Li ◽  
...  

The 2019 Ridgecrest, California earthquake sequence ruptured along a complex fault system and triggered seismic and aseismic slips on intersecting faults. To characterize the surface rupture kinematics and fault slip distribution, we used optical images and Interferometric Synthetic Aperture Radar (InSAR) observations to reconstruct the displacement caused by the earthquake sequence. We further calculated curl and divergence from the north-south and east-west components, to effectively identify the surface rupture traces. The results show that the major seismogenic fault had a length of ~55 km and strike of 320° and consisted of five secondary faults. On the basis of the determined multiple-fault geometries, we inverted the coseismic slip distributions by InSAR measurements, which indicates that the Mw7.1 mainshock was dominated by the right-lateral strike-slip (maximum strike-slip of ~5.8 m at the depth of ~7.5 km), with a small dip-slip component (peaking at ~1.8 m) on an east-dipping fault. The Mw6.4 foreshock was dominated by the left-lateral strike-slip on a north-dipping fault. These earthquakes triggered obvious aseismic creep along the Garlock fault (117.3° W–117.5° W). These results are consistent with the rupture process of the earthquake sequence, which featured a complicated cascading rupture rather than a single continuous rupture front propagating along multiple faults.


Sign in / Sign up

Export Citation Format

Share Document