scholarly journals Transcriptional regulation of the human GD3 synthase gene expression in Fas-induced Jurkat T cells: a critical role of transcription factor NF-κB in regulated expression

Glycobiology ◽  
2006 ◽  
Vol 16 (5) ◽  
pp. 375-389 ◽  
Author(s):  
Young Kang ◽  
Sung-Koo Kang ◽  
Young-Choon Lee ◽  
Hee-Jeong Choi ◽  
Young-Seek Lee ◽  
...  
Life Sciences ◽  
2008 ◽  
Vol 83 (9-10) ◽  
pp. 305-312 ◽  
Author(s):  
Solomon S. Solomon ◽  
Gipsy Majumdar ◽  
Antonio Martinez-Hernandez ◽  
Rajendra Raghow

Blood ◽  
2010 ◽  
Vol 115 (3) ◽  
pp. 541-548 ◽  
Author(s):  
Yong Tang ◽  
Marie J. Desierto ◽  
Jichun Chen ◽  
Neal S. Young

Abstract The transcription factor T-bet is a key regulator of type 1 immune responses. We examined the role of T-bet in an animal model of immune-mediated bone marrow (BM) failure using mice carrying a germline T-bet gene deletion (T-bet−/−). In comparison with normal C57BL6 (B6) control mice, T-bet−/− mice had normal cellular composition in lymphohematopoietic tissues, but T-bet−/− lymphocytes were functionally defective. Infusion of 5 × 106 T-bet−/− lymph node (LN) cells into sublethally irradiated, major histocompatibility complex–mismatched CByB6F1 (F1) recipients failed to induce the severe marrow hypoplasia and fatal pancytopenia that is produced by injection of similar numbers of B6 LN cells. Increasing T-bet−/− LN-cell dose to 10 to 23 × 106 per recipient led to only mild hematopoietic deficiency. Recipients of T-bet−/− LN cells had no expansion in T cells or interferon-γ–producing T cells but showed a significant increase in Lin−Sca1+CD117+CD34− BM cells. Plasma transforming growth factor-β and interleukin-17 concentrations were increased in T-bet−/− LN-cell recipients, possibly a compensatory up-regulation of the Th17 immune response. Continuous infusion of interferon-γ resulted in hematopoietic suppression but did not cause T-bet−/− LN-cell expansion or BM destruction. Our data provided fresh evidence demonstrating a critical role of T-bet in immune-mediated BM failure.


2018 ◽  
Author(s):  
Xuhao Ni ◽  
Jinhui Tao ◽  
Jian Gu ◽  
Benjamin V. Park ◽  
Zuojia Chen ◽  
...  

AbstractRegulatory T cells (Treg) are crucial mediators of immune control. The characteristic gene expression and suppressive function of Treg depend considerably on the stable expression and activity of the transcription factor Foxp3. While transcriptional regulation of the Foxp3 gene has been studied in depth, both the expression and function of Foxp3 are also modulated at the protein level. However, the molecular players involved in posttranslational Foxp3 regulation are just beginning to be elucidated. Here we found TRAF6-deficient Tregs were dysfunctional in vivo; mice with Treg-restricted deletion of TRAF6 were resistant to B16 melanomas and displayed enhanced anti-tumor immunity. We further determined that Foxp3 undergoes lysine-63 chain (K63) ubiquitination at lysine 262 mediated by the E3 ligase TRAF6. When deprived of TRAF6 activity or rendered insensitive to K63 ubiquitination, Foxp3 displayed aberrant, perinuclear accumulation, disrupted function. Thus, Foxp3 ubiquitination by TRAF6 ensures proper localization of Foxp3 and facilitates Foxp3’s gene-regulating activity in Tregs. These results implicate TRAF6 as a key posttranslational, Treg-stabilizing force that may be targeted in novel tolerance-breaking therapies.


2018 ◽  
Vol 8 (2) ◽  
pp. e1532762 ◽  
Author(s):  
Fiamma Salerno ◽  
Aurelie Guislain ◽  
Julian J. Freen-Van Heeren ◽  
Benoit P. Nicolet ◽  
Howard A. Young ◽  
...  

Tumor Biology ◽  
2010 ◽  
Vol 32 (2) ◽  
pp. 273-283 ◽  
Author(s):  
Hui Tian ◽  
Guo-Wei Qian ◽  
Wang Li ◽  
Fei-Fei Chen ◽  
Jie-Hui Di ◽  
...  

2014 ◽  
Vol 289 (44) ◽  
pp. 30763-30771 ◽  
Author(s):  
Maupali Dasgupta ◽  
Hamiyet Unal ◽  
Belinda Willard ◽  
Jinbo Yang ◽  
Sadashiva S. Karnik ◽  
...  

STAT3 is a pleiotropic transcription factor that is activated by the phosphorylation of tyrosine 705 in response to many cytokines and growth factors. STAT3 without Tyr-705 phosphorylation (U-STAT3) is also a potent transcription factor, and its concentration in cells increases greatly in response to STAT3 activation because the STAT3 gene can be driven by phosphorylated STAT3 dimers. We have now searched for post-translational modifications of U-STAT3 that might have a critical role in its function. An analysis by mass spectroscopy indicated that U-STAT3 is acetylated on Lys-685, and the integrity of Lys-685 is required for the expression of most U-STAT3-dependent genes. In contrast, we found only a very minor role for Lys-685 in gene expression induced in response to tyrosine-phosphorylated STAT3. U-STAT3 plays an important role in angiotensin II-induced gene expression and in the consequent development of cardiac hypertrophy and dysfunction. Mutation of Lys-685 inhibits this function of STAT3, providing new information on the role of U-STAT3 in augmenting the development of heart failure.


2010 ◽  
Vol 9 (7) ◽  
pp. 1100-1108 ◽  
Author(s):  
Simon V. S. IpCho ◽  
Kar-Chun Tan ◽  
Geraldine Koh ◽  
Joel Gummer ◽  
Richard P. Oliver ◽  
...  

ABSTRACT The Stagonospora nodorum StuA transcription factor gene SnStuA was identified by homology searching in the genome of the wheat pathogen Stagonospora nodorum. Gene expression analysis revealed that SnStuA transcript abundance increased throughout infection and in vitro growth to peak during sporulation. To investigate its role, the gene was deleted by homologous recombination. The growth of the resulting mutants was retarded on glucose compared to the wild-type growth, and the mutants also failed to sporulate. Glutamate as a sole carbon source restored the growth rate defect observed on glucose, although sporulation remained impaired. The SnstuA strains were essentially nonpathogenic, with only minor growth observed around the point of inoculation. The role of SnstuA was investigated using metabolomics, which revealed that this gene's product played a key role in regulating central carbon metabolism, with glycolysis, the TCA cycle, and amino acid synthesis all affected in the mutants. SnStuA was also found to positively regulate the synthesis of the mycotoxin alternariol. Gene expression studies on the recently identified effectors in Stagonospora nodorum found that SnStuA was a positive regulator of SnTox3 but was not required for the expression of ToxA. This study has uncovered a multitude of novel regulatory targets of SnStuA and has highlighted the critical role of this gene product in the pathogenicity of Stagonospora nodorum.


2004 ◽  
Vol 385 (9) ◽  
pp. 829-834 ◽  
Author(s):  
Jan Rether ◽  
Gerhard Erkel ◽  
Timm Anke ◽  
Olov Sterner

Abstract In a search for compounds inhibiting the inducible TNF-αa promoter activity in T cells, a new spiro-compound, designated oxaspirodion, was isolated from fermentations of the ascomycete Chaetomium subspirale. Oxaspirodion inhibited TNF-α promoter-driven luciferase reporter gene expression with an IC50 value of 2.5 µg/ml (10 µM) in TPA/ionomycin-stimulated Jurkat T cells. Studies on the mode of action of the compound revealed that the inhibition of the TNF-α promoter activity is caused by an inhibition of the phosphorylation of the ERK1/2 kinases. In addition, oxaspirodion inhibited the activation of the transcription factor NF-κB, which is involved in the inducible expression of many proinflammatory genes.


Sign in / Sign up

Export Citation Format

Share Document