scholarly journals Critical role of post-transcriptional regulation for IFN-γ in tumor-infiltrating T cells

2018 ◽  
Vol 8 (2) ◽  
pp. e1532762 ◽  
Author(s):  
Fiamma Salerno ◽  
Aurelie Guislain ◽  
Julian J. Freen-Van Heeren ◽  
Benoit P. Nicolet ◽  
Howard A. Young ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5813-5823 ◽  
Author(s):  
Solenne Vigne ◽  
Gaby Palmer ◽  
Céline Lamacchia ◽  
Praxedis Martin ◽  
Dominique Talabot-Ayer ◽  
...  

Abstract IL-36α (IL-1F6), IL-36β (IL-1F8), and IL-36γ (IL-1F9) are members of the IL-1 family of cytokines. These cytokines bind to IL-36R (IL-1Rrp2) and IL-1RAcP, activating similar intracellular signals as IL-1, whereas IL-36Ra (IL-1F5) acts as an IL-36R antagonist (IL-36Ra). In this study, we show that both murine bone marrow-derived dendritic cells (BMDCs) and CD4+ T lymphocytes constitutively express IL-36R and respond to IL-36α, IL-36β, and IL-36γ. IL-36 induced the production of proinflammatory cytokines, including IL-12, IL-1β, IL-6, TNF-α, and IL-23 by BMDCs with a more potent stimulatory effect than that of other IL-1 cytokines. In addition, IL-36β enhanced the expression of CD80, CD86, and MHC class II by BMDCs. IL-36 also induced the production of IFN-γ, IL-4, and IL-17 by CD4+ T cells and cultured splenocytes. These stimulatory effects were antagonized by IL-36Ra when used in 100- to 1000-fold molar excess. The immunization of mice with IL-36β significantly and specifically promoted Th1 responses. Our data thus indicate a critical role of IL-36R ligands in the interface between innate and adaptive immunity, leading to the stimulation of T helper responses.


2008 ◽  
Vol 76 (8) ◽  
pp. 3628-3631 ◽  
Author(s):  
Sumana Chakravarty ◽  
G. Christian Baldeviano ◽  
Michael G. Overstreet ◽  
Fidel Zavala

ABSTRACT The protective immune response against liver stages of the malaria parasite critically requires CD8+ T cells. Although the nature of the effector mechanism utilized by these cells to repress parasite development remains unclear, a critical role for gamma interferon (IFN-γ) has been widely assumed based on circumstantial evidence. However, the requirement for CD8+ T-cell-mediated IFN-γ production in protective immunity to this pathogen has not been directly tested. In this report, we use an adoptive transfer strategy with circumsporozoite (CS) protein-specific transgenic T cells to examine the role of CD8+ T-cell-derived IFN-γ production in Plasmodium yoelii-infected mice. We show that despite a marginal reduction in the expansion of naive IFN-γ-deficient CS-specific transgenic T cells, their antiparasite activity remains intact. Further, adoptively transferred IFN-γ-deficient CD8+ T cells were as efficient as their wild-type counterparts in limiting parasite growth in naive mice. Taken together, these studies demonstrate that IFN-γ secretion by CS-specific CD8+ T cells is not essential to protect mice against live sporozoite challenge.


2018 ◽  
Author(s):  
Fiamma Salerno ◽  
Aurelie Guislain ◽  
Julian J. Freen-van Heeren ◽  
Benoit P. Nicolet ◽  
Howard A. Young ◽  
...  

AbstractProtective T cell responses against tumors require the production of Interferon gamma (IFN-γ). However, tumor-infiltrating T cells (TILs) gradually lose their capacity to produce IFN-γ and therefore fail to clear malignant cells. Dissecting the underlying mechanisms that block cytokine production is thus key for improving T cell products. Here we show that although TILs express substantial levels of Ifng mRNA, post-transcriptional mechanisms impede the production of IFN-γ protein due to loss of mRNA stability. CD28 triggering, but not PD1 blocking antibodies, effectively restores the stability of Ifng mRNA. Intriguingly, TILs devoid of AU-rich elements within the 3’untranslated region maintain stabilized Ifng mRNA and produce more IFN-γ protein than wild-type TILs. This sustained IFN-γ production translates into effective suppression of tumor outgrowth, which is almost exclusively mediated by direct effects on the tumor cells. We therefore conclude that post-transcriptional mechanisms could be modulated to potentiate effective T cell therapies in cancer.


PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e92457 ◽  
Author(s):  
José A. González-Feliciano ◽  
Marimar Hernández-Pérez ◽  
Luis A. Estrella ◽  
Daisy D. Colón-López ◽  
Armando López ◽  
...  

2006 ◽  
Vol 74 (9) ◽  
pp. 5333-5340 ◽  
Author(s):  
Caroline A. Rowland ◽  
Ganjana Lertmemongkolchai ◽  
Alison Bancroft ◽  
Ashraful Haque ◽  
M. Stephen Lever ◽  
...  

ABSTRACT Burkholderia mallei is a gram-negative bacterium which causes the potentially fatal disease glanders in humans; however, there is little information concerning cell-mediated immunity to this pathogen. The role of gamma interferon (IFN-γ) during B. mallei infection was investigated using a disease model in which infected BALB/c mice normally die between 40 and 60 days postinfection. IFN-γ knockout mice infected with B. mallei died within 2 to 3 days after infection, and there was uncontrolled bacterial replication in several organs, demonstrating the essential role of IFN-γ in the innate immune response to this pathogen. Increased levels of IFN-γ, interleukin-6 (IL-6), and monocyte chemoattractant protein 1 were detected in the sera of immunocompetent mice in response to infection, and splenic mRNA expression of IFN-γ, IL-6, IL-12p35, and IL-27 was elevated 24 h postinfection. The effects of IL-18, IL-27, and IL-12 on stimulation of the rapid IFN-γ production were investigated in vitro by analyzing IFN-γ production in the presence of heat-killed B. mallei. IL-12 was essential for IFN-γ production in vitro; IL-18 was also involved in induction of IFN-γ, but IL-27 was not required for IFN-γ production in response to heat-killed B. mallei. The main cellular sources of IFN-γ were identified in vitro as NK cells, CD8+ T cells, and TCRγδ T cells. Our data show that B. mallei is susceptible to cell-mediated immune responses which promote expression of type 1 cytokines. This suggests that development of effective vaccines against glanders should target the production of IFN-γ.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1037-1037
Author(s):  
Yong Tang ◽  
Jichun Chen ◽  
Neal Young

Abstract Patients with aplastic anemia have elevated T-bet, a Th1 transcription factor, in peripheral blood CD4 and CD8 T cells, suggesting that T-bet over-expression and dysregulated Th1 immune response contributes to pathophysiology of marrow failure (Solomou EE et al., Blood. 2006; 107:3983). In the present study, we studied the role of T-bet in inducing bone marrow failure in a mouse model of immune-mediated BM failure, employing mice engineered with a germline T-bet deletion as lymphocyte donors. Compared with T-bet +/+ wild-type controls, T-bet−/− mice have similar cellular composition in various lymphohematopietic tissues including peripheral blood, spleen, thymus, lymph nodes (LN), and BM. Incubation of effector T-bet−/− LN cells with MHC-mismatched target CByB6F1 (F1) BM cells in an in vitro cytotoxicity assay resulted in a significantly lower proportion of apoptotic target cells than did wild-type T-bet+/+ LN effector cells, suggesting that T-bet−/− effector LN cells are functionally defective. While infusion of 5×106 wild-type T-bet+/+ LN cells into sublethally-irradiated F1 mice led to severe pancytopenia and aplastic bone marrow in recipient mice, infusion of the same number of T-bet−/− LN cells failed to result in marrow failure, and recipients had relatively normal blood counts and bone marrow cellularity. By flow cytometry, both expansion of CD4+ and CD8+ T cells and elevation in intracellular Th1 cytokine gamma interferon (IFN-γ), which are characteristic of marrow cells in recipients received B6 LN cells, were absent in recipients receiving T-bet −/− LN cells. Serum IFN-γ concentration in F1 mice infused with T-bet −/− LN cells was similar to the level in F1 control mice received TBI alone, and both were significantly lower than serum IFN-γ in recipients of wild-type B6 LN cells. In contrast, serum TGF-γ concentration was higher in F1 mice that received TBI alone or TBI plus T-bet −/− LN cell infusion, compared with mice that received TBI plus B6 LN cells. An increase of T-bet −/− LN cell infusion to 10×106 cells per recipient led to very mild BM failure. Contrary to the markedly increased number of CD4+ and CD8+ T cells and elevated IFN-γ level in the BM of F1 mice which have received wild type B6 LN cells, F1 mice infused with T-bet −/− LN have low CD4+ and CD8+ cells and low IFN-γ level in the BM similar to F1 mice received TBI alone, but they show increased IL4 and IL17 levels within bone marrow T cells, indicating that the diminished Th1 immune response due to T-bet deficiency was partially compensated by up-regulated Th2 and Th17 responses. Our data demonstrated that T-bet plays a critical role in immune mediated bone marrow failure. Approaches targeting to T-bet signal pathway may lead to novel treatment for bone marrow failure and other autoimmune diseases.


2009 ◽  
Vol 77 (4) ◽  
pp. 1465-1474 ◽  
Author(s):  
E. Bourreau ◽  
C. Ronet ◽  
E. Darcissac ◽  
M. C. Lise ◽  
D. Sainte Marie ◽  
...  

ABSTRACT The levels of regulatory T cells (Treg cells), analyzed by Foxp3 mRNA expression, were determined in lesions from patients with acute cutaneous leishmaniasis (ACL) and chronic cutaneous leishmaniasis (CCL). We demonstrated that Treg cells preferentially accumulate in lesions from ACL patients during the early phase of infection (lesion duration of less than 1 month). In addition, levels of Foxp3 mRNA transcripts were significantly higher in specimens from patients with CCL than in those from patients with ACL, suggesting a critical role of intralesional Treg cells in CCL. Intralesional Treg cells from both ACL and CCL patients were shown to have suppressive functions in vitro, since they inhibited the gamma interferon (IFN-γ) produced by CD4+ CD25− T cells purified from peripheral blood mononuclear cells from the same patient in response to Leishmania guyanensis stimulation. Intralesional 2,3-indoleamine dioxygenase (IDO) mRNA expression was associated with that of Foxp3, suggesting a role for IDO in the suppressive activity of intralesional Treg cells. In addition, a role, albeit minor, of interleukin-10 (IL-10) was also demonstrated, since neutralization of IL-10 produced by intralesional T cells increased IFN-γ production by effector cells in an in vitro suppressive assay. These results confirm the role of intralesional Treg cells in the immunopathogenesis of human Leishmania infection, particularly in CCL patients.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingpeng Yao ◽  
Ying Yang ◽  
Wenhui Guo ◽  
Lifan Xu ◽  
Menghao You ◽  
...  

AbstractT follicular helper (TFH) cells are specialized effector CD4+ T cells critical to humoral immunity. Whether post-transcriptional regulation has a function in TFH cells is unknown. Here, we show conditional deletion of METTL3 (a methyltransferase catalyzing mRNA N6-methyladenosine (m6A) modification) in CD4+ T cells impairs TFH differentiation and germinal center responses in a cell-intrinsic manner in mice. METTL3 is necessary for expression of important TFH signature genes, including Tcf7, Bcl6, Icos and Cxcr5 and these effects depend on intact methyltransferase activity. m6A-miCLIP-seq shows the 3′ UTR of Tcf7 mRNA is subjected to METTL3-dependent m6A modification. Loss of METTL3 or mutation of the Tcf7 3′ UTR m6A site results in accelerated decay of Tcf7 transcripts. Importantly, ectopic expression of TCF-1 (encoded by Tcf7) rectifies TFH defects owing to METTL3 deficiency. Our findings indicate that METTL3 stabilizes Tcf7 transcripts via m6A modification to ensure activation of a TFH transcriptional program, indicating a pivotal function of post-transcriptional regulation in promoting TFH cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document