Glycoxidative profile of cancer patient serum: A clinical result to associate glycation to cancer

Glycobiology ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 152-158
Author(s):  
Hamda Khan ◽  
Sultan Alouffi ◽  
Abdulrahman A Alatar ◽  
Ahmad A Qahtan ◽  
Mohammad Faisal ◽  
...  

Abstract The influence of advanced glycation end products (AGEs) in the biological processes contribute to the life-changing complications such as progression of cancer, diabetes and other chronic disorders. The receptor of AGEs while interacting with its ligands causes a never-ending irregularity in the cell-signaling communication. Hence, AGEs are considered as an important link between progression and contribution to cancer. This study focuses on the presence and/or absence of oxidative and glycative stress in the serum samples of various cancer patients. During analysis of the early and intermediate glycation product in cancer patient’s sera, our result indicates an increasing trend of both the adducts as compared to normal healthy subjects. Similarly, one of the AGEs i.e., carboxymethyllysine was found to be enhanced in cancer sera as compared to NHS. The binding characteristics of circulating auto-antibodies in cancer patient’s sera against human serum albumin (HSA)-AGEs were assessed through ELISA and furthermore, the maximum percent inhibition against HSA-AGEs was observed as 57–63%, 46–62% and 42–64% in prostate cancer, lung cancer and head and neck cancer. Hence, our result successfully assisted the presence of AGEs in all the cancer patient’s sera though it is not clear which specific cancer is more potent to AGEs.

Mutagenesis ◽  
2020 ◽  
Vol 35 (3) ◽  
pp. 291-297
Author(s):  
Permal Deo ◽  
Varinderpal S Dhillon ◽  
Wai Mun Lim ◽  
Emma L Jaunay ◽  
Leigh Donnellan ◽  
...  

Abstract This study investigated the effect of dietary sugars and advanced glycation end-products (AGE) on telomere dynamics in WIL2-NS cells. Dietary sugars [glucose (Glu) and fructose (Fru); 0.1 M each] were incubated with bovine serum albumin (BSA) (10 mg/ml) at 60 ± 1°C for 6 weeks to generate AGE-BSA. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed total AGE levels as 87.74 ± 4.46 nmol/mg and 84.94 ± 4.28 nmol/mg respectively in Glu-BSA and Fru-BSA model. Cell treatment studies using WIL2-NS cells were based on either glucose, fructose (each 2.5–40 mM) or AGE-BSA (200–600 µg/ml) in a dose-dependent manner for 9 days. Telomere length (TL) was measured using qPCR. Nitric oxide (NO) production and tumour necrosis factor-α (TNF-α) levels were measured in WIL2-NS culture medium. An increasing trend for TNF-α and NO production was observed with higher concentration of glucose (R2 = 0.358; P = 0.019; R2 = 0.307; P = 0.027) and fructose (R2 = 0.669; P = 0.001; R2 = 0.339; P = 0.006). A decreasing trend for TL (R2 = 0.828; P = 0.000), and an increasing trend for NO production (R2 = 0.352; P = 0.031) were observed with increasing Glu-BSA concentrations. Fru-BSA treatment did not show significant trend on TL (R2 = 0.135; P = 0.352) with increasing concentration, however, a significant reduction was observed at 600 µg/ml (P < 0.01) when compared to BSA treatment. No trends for TNF-α levels and a decreasing trend on NO production (R2 = 0.5201; P = 0.019) was observed with increasing Fru-BSA treatment. In conclusion, this study demonstrates a potential relationship between dietary sugars, AGEs and telomere attrition. AGEs may also exert telomere shortening through the production of pro-inflammatory metabolites, which ultimately increase the risk of diabetes complications and age-related disease throughout lifespan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana Indyk ◽  
Agnieszka Bronowicka-Szydełko ◽  
Andrzej Gamian ◽  
Aleksandra Kuzan

AbstractGlycation is a non-enzymatic process involving the reaction of reducing sugars or reactive oxoaldehyde with proteins, lipids or nucleic acids, which results in the formation of advanced glycation end products (AGEs). The presented work discusses the glycation process in people with advanced stage of type 1 or type 2 diabetes. The concentration of different AGEs and their receptors for 58 serum samples was determined by ELISA and by spectrofluorimetric methods. In addition to fluorescent low molecular weight and protein-bound AGEs, we have also marked a new class of AGEs: melibiose-derived glycation product (MAGE). Our attention was also focused on the two groups of AGEs receptors: scavenger receptors (SR-A and SR-B) and RAGE. The correlation between the SR-AI scavenging receptors concentration and the fluorescence of AGEs as well as diabetes biological markers: GFR, creatinine contentration and HbA1c was demonstrated. A relationship between the concentration of AGEs and their receptors was also found in serum sample of patients treated with the metformin and aspirin. Furthermore, the concentration of SR-AI scavenger and the fluorescence of total AGEs was significantly lower in treated patients than in non treated patients. AGEs have also been found to contribute to the development of cardiovascular disease, atherosclerosis and diabetic complications, what could be deduced from the correlation of AGEs level and HDL cholesterol or uric acid level. Thus, it was confirmed that AGEs are involved in the pathomechanism of diabetes and other degenerative diseases. Nowadays, it is believed that AGEs due to the long time remaining in the body may be an important diagnostic marker. Their determination may allow monitoring the progression of the disease and the effectiveness of the therapy.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3523
Author(s):  
Agnieszka Nowak ◽  
Brygida Przywara-Chowaniec ◽  
Aleksandra Damasiewicz-Bodzek ◽  
Dominika Blachut ◽  
Ewa Nowalany-Kozielska ◽  
...  

Systemic lupus erythematosus (SLE) is characterized by abnormal action of the immune system and a state of chronic inflammation. The disease can cause life-threatening complications. Neoepitopes arising from interdependent glycation and oxidation processes might be an element of SLE pathology. The groups included in the study were 31 female SLE patients and 26 healthy female volunteers (the control group). Blood serum samples were obtained to evaluate concentrations of advanced glycation end-products (AGEs), carboxymethyllysine (CML), carboxyethyllysine (CEL), pentosidine, and a soluble form of the receptor for advanced glycation end-products (sRAGE). Compared to a healthy control group, the SLE patients exhibited a higher concentration of AGEs and a lower concentration of sRAGE in serum. There were no statistically significant differences in serum CML, CEL, and pentosidine concentrations between the groups. Therefore, SLE patients could be at risk of intensified glycation process and activation of the proinflammatory receptor for advanced glycation end-products (RAGE), which could potentially worsen the disease course; however, it is not clear which compounds contribute to the increased concentration of AGEs in the blood. Additionally, information about the cigarette smoking and alcohol consumption of the study participants was obtained.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6152-6161 ◽  
Author(s):  
Brigitta Buttari ◽  
Elisabetta Profumo ◽  
Antonella Capozzi ◽  
Francesco Facchiano ◽  
Luciano Saso ◽  
...  

Abstract In chronic disorders related to endothelial cell dysfunction, plasma β2 glycoprotein I (β2GPI) plays a role as a target antigen of pathogenetic autoimmune responses. However, information is still lacking to clarify why β2GPI triggers autoimmunity. It is possible that posttranslational modification of the protein, such as nonenzymatic glycosylation, leads to the formation of advanced glycation end products (AGEs). The aim of our study was to explore whether glucose-modified β2GPI is able to interact and activate monocyte-derived immature dendritic cells (iDCs) from healthy human donors. SDS-PAGE and spectrofluorometric analyses indicated that β2GPI incubated with glucose was sugar modified, and that this modification likely consisted of AGE formation, resulting in AGE-β2GPI. AGE-β2GPI caused phenotypical and functional maturation of iDCs involving the activation of p38 MAPK, ERK, and NF-κB. It also induced on DCs a significant up-regulation of RAGE, the receptor for AGEs. Evidence for RAGE involvement comes from blocking experiments with an anti-RAGE mAb, confocal analysis, and coimmunoprecipitation experiments. AGE-β2GPI–stimulated DCs had increased allostimulatory ability and primed naive T lymphocytes toward a Th2 polarization. These findings might explain in part the interactive role of β2GPI, AGEs, and DCs in chronic disorders related to endothelial cell dysfunction.


Sign in / Sign up

Export Citation Format

Share Document