scholarly journals Refining genome-wide associated loci for serum uric acid in individuals with African ancestry

2019 ◽  
Vol 29 (3) ◽  
pp. 506-514
Author(s):  
Guanjie Chen ◽  
Daniel Shriner ◽  
Ayo P Doumatey ◽  
Jie Zhou ◽  
Amy R Bentley ◽  
...  

Abstract Objective Serum uric acid is the end-product of purine metabolism and at high levels is a risk factor for several human diseases including gout and cardiovascular disease. Heritability estimates range from 0.32 to 0.63. Genome-wide association studies (GWAS) provide an unbiased approach to identify loci influencing serum uric acid. Here, we performed the first GWAS for serum uric acid in continental Africans, with replication in African Americans. Methods Africans (n = 4126) and African Americans (n = 5007) were genotyped on high-density GWAS arrays. Efficient mixed model association, a variance component approach, was used to perform association testing for a total of ~ 18 million autosomal genotyped and imputed variants. CAVIARBF was used to fine map significant regions. Results We identified two genome-wide significant loci: 4p16.1 (SLC2A9) and 11q13.1 (SLC22A12). At SLC2A9, the most strongly associated SNP was rs7683856 (P = 1.60 × 10−44). Conditional analysis revealed a second signal indexed by rs6838021 (P = 5.75 × 10−17). Gene expression and regulatory motif data prioritized a single-candidate causal variant for each signal. At SLC22A12, the most strongly associated SNP was rs147647315 (P = 6.65 × 10−25). Conditional analysis and functional annotation prioritized the missense variant rs147647315 (R (Arg) > H (His)) as the sole causal variant. Functional annotation of these three signals implicated processes in skeletal muscle, subcutaneous adipose tissue and the kidneys, respectively. Conclusions This first GWAS of serum uric acid in continental Africans identified three associations at two loci, SLC2A9 and SLC22A12. The combination of weak linkage disequilibrium in Africans and functional annotation led to the identification of candidate causal SNPs for all three signals. Each candidate causal variant implicated a different cell type. Collectively, the three associations accounted for 4.3% of the variance of serum uric acid.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Guanjie Chen ◽  
Adebowale Adeyemo ◽  
Jie Zhou ◽  
Ayo P. Doumatey ◽  
Amy R. Bentley ◽  
...  

AbstractSerum bilirubin is associated with several clinical outcomes, including hypertension, type 2 diabetes (T2D), and drug metabolism. Here, we describe findings from our genome-wide association studies (GWAS) of serum (TBIL) using a generalized linear mixed model in West Africans (n = 1127), with adjustment for age, sex, body mass index, T2D, significant principal components of population structure, and cryptic relatedness. Genome-wide conditional analysis and CAVIARBF were used to fine map significant loci. The causal effect of TBIL on hypertension was assessed by Mendelian randomization (MR) using the GWAS findings as instrumental variables (IVs) in African Americans (n = 3,067). The SNP rs887829 (UGT1A1) was significantly associated with TBIL levels (effect allele (T) frequency = 0.49, β (SE) = 0.59 (0.04), p = 9.13 × 10−54). Genome-wide conditional analysis and regional fine mapping pointed to rs887829 as a possible causal variant with a posterior inclusion probability of 0.99. The T allele of rs887829 is associated with lower hepatic expression of UGT1A1. Using rs887829 as an IV, two-stage least-squares MR showed a causal effect of bilirubin on hypertension (β = −0.76, 95% CI [−1.52, −0.01], p = 0.0459). Our finding confirms that UGT1A1 influences bilirubin levels. Notably, lower TBIL is causally associated with the increased risk of hypertension.


2014 ◽  
Author(s):  
Xu Zhang ◽  
Wenbo Mu ◽  
Cong Liu ◽  
Wei Zhang

Genetic admixture has been utilized as a tool for identifying loci associated with complex traits and diseases in recently admixed populations such as African Americans. In particular, admixture mapping is an efficient approach to identifying genetic basis for those complex diseases with substantial racial or ethnic disparities. Though current advances in admixture mapping algorithms may utilize the entire panel of SNPs, providing ancestry-informative markers (AIMs) that can differentiate parental populations and estimate ancestry proportions in an admixed population may particularly benefit admixture mapping in studies of limited samples, help identify unsuitable individuals (e.g., through genotyping the most informative ancestry markers) before starting large genome-wide association studies (GWAS), or guide larger scale targeted deep re-sequencing for determining specific disease-causing variants. Defining panels of AIMs based on commercial, high-throughput genotyping platforms will facilitate the utilization of these platforms for simultaneous admixture mapping of complex traits and diseases, in addition to conventional GWAS. Here, we describe AIMs detected based on the Shannon Information Content (SIC) or Fst for African Americans with genome-wide coverage that were selected from ~2.3 million single nucleotide polymorphisms (SNPs) covered by the Affymetrix Axiom Pan-African array, a newly developed genotyping platform optimized for individuals of African ancestry.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Karlijn A. C. Meeks ◽  
Amy R. Bentley ◽  
Mateus H. Gouveia ◽  
Guanjie Chen ◽  
Jie Zhou ◽  
...  

Abstract Background A complex set of perturbations occur in cytokines and hormones in the etiopathogenesis of obesity and related cardiometabolic conditions such as type 2 diabetes (T2D). Evidence for the genetic regulation of these cytokines and hormones is limited, particularly in African-ancestry populations. In order to improve our understanding of the biology of cardiometabolic traits, we investigated the genetic architecture of a large panel of obesity- related cytokines and hormones among Africans with replication analyses in African Americans. Methods We performed genome-wide association studies (GWAS) in 4432 continental Africans, enrolled from Ghana, Kenya, and Nigeria as part of the Africa America Diabetes Mellitus (AADM) study, for 13 obesity-related cytokines and hormones, including adipsin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), interleukin-1 receptor antagonist (IL1-RA), interleukin-6 (IL-6), interleukin-10 (IL-10), leptin, plasminogen activator inhibitor-1 (PAI-1), resistin, visfatin, insulin, glucagon, and ghrelin. Exact and local replication analyses were conducted in African Americans (n = 7990). The effects of sex, body mass index (BMI), and T2D on results were investigated through stratified analyses. Results GWAS identified 39 significant (P value < 5 × 10−8) loci across all 13 traits. Notably, 14 loci were African-ancestry specific. In this first GWAS for adipsin and ghrelin, we detected 13 and 4 genome-wide significant loci respectively. Stratified analyses by sex, BMI, and T2D showed a strong effect of these variables on detected loci. Eight novel loci were successfully replicated: adipsin (3), GIP (1), GLP-1 (1), and insulin (3). Annotation of these loci revealed promising links between these adipocytokines and cardiometabolic outcomes as illustrated by rs201751833 for adipsin and blood pressure and locus rs759790 for insulin level and T2D in lean individuals. Conclusions Our study identified genetic variants underlying variation in multiple adipocytokines, including the first loci for adipsin and ghrelin. We identified population differences in variants associated with adipocytokines and highlight the importance of stratification for discovery of loci. The high number of African-specific loci detected emphasizes the need for GWAS in African-ancestry populations, as these loci could not have been detected in other populations. Overall, our work contributes to the understanding of the biology linking adipocytokines to cardiometabolic traits.


2014 ◽  
Author(s):  
Xu Zhang ◽  
Wenbo Mu ◽  
Cong Liu ◽  
Wei Zhang

Genetic admixture has been utilized as a tool for identifying loci associated with complex traits and diseases in recently admixed populations such as African Americans. In particular, admixture mapping is an efficient approach to identifying genetic basis for those complex diseases with substantial racial or ethnic disparities. Though current advances in admixture mapping algorithms may utilize the entire panel of SNPs, providing ancestry-informative markers (AIMs) that can differentiate parental populations and estimate ancestry proportions in an admixed population may particularly benefit admixture mapping in studies of limited samples, help identify unsuitable individuals (e.g., through genotyping the most informative ancestry markers) before starting large genome-wide association studies (GWAS), or guide larger scale targeted deep re-sequencing for determining specific disease-causing variants. Defining panels of AIMs based on commercial, high-throughput genotyping platforms will facilitate the utilization of these platforms for simultaneous admixture mapping of complex traits and diseases, in addition to conventional GWAS. Here, we describe AIMs detected based on the Shannon Information Content (SIC) or Fst for African Americans with genome-wide coverage that were selected from ~2.3 million single nucleotide polymorphisms (SNPs) covered by the Affymetrix Axiom Pan-African array, a newly developed genotyping platform optimized for individuals of African ancestry.


2021 ◽  
pp. annrheumdis-2019-216794
Author(s):  
Akari Suzuki ◽  
Matteo Maurizio Guerrini ◽  
Kazuhiko Yamamoto

For more than a decade, genome-wide association studies have been applied to autoimmune diseases and have expanded our understanding on the pathogeneses. Genetic risk factors associated with diseases and traits are essentially causative. However, elucidation of the biological mechanism of disease from genetic factors is challenging. In fact, it is difficult to identify the causal variant among multiple variants located on the same haplotype or linkage disequilibrium block and thus the responsible biological genes remain elusive. Recently, multiple studies have revealed that the majority of risk variants locate in the non-coding region of the genome and they are the most likely to regulate gene expression such as quantitative trait loci. Enhancer, promoter and long non-coding RNA appear to be the main target mechanisms of the risk variants. In this review, we discuss functional genetics to challenge these puzzles.


The Prostate ◽  
2010 ◽  
Vol 71 (9) ◽  
pp. 955-963 ◽  
Author(s):  
Yizhen Lu ◽  
Zheng Zhang ◽  
Hongjie Yu ◽  
S. Lily Zheng ◽  
William B. Isaacs ◽  
...  

2020 ◽  
Author(s):  
Yanjiao Jin ◽  
Jie Yang ◽  
Shuyue Zhang ◽  
Jin Li ◽  
Songlin Wang

Abstract Background: Oral diseases impact the majority of the world’s population. The following traits are common in oral inflammatory diseases: mouth ulcers, painful gums, bleeding gums, loose teeth, and toothache. Despite the prevalence of genome-wide association studies, the associations between these traits and common genomic variants, and whether pleiotropic loci are shared by some of these traits remain poorly understood. Methods: In this work, we conducted multi-trait joint analyses based on the summary statistics of genome-wide association studies of these five oral inflammatory traits from the UK Biobank, each of which is comprised of over 10,000 cases and over 300,000 controls. We estimated the genetic correlations between the five traits. We conducted fine-mapping and functional annotation based on multi-omics data to better understand the biological functions of the potential causal variants at each locus. To identify the pathways in which the candidate genes were mainly involved, we applied gene-set enrichment analysis, and further performed protein-protein interaction (PPI) analyses.Results: We identified 39 association signals that surpassed genome-wide significance, including three that were shared between two or more oral inflammatory traits, consistent with a strong correlation. Among these genome-wide significant loci, two were novel for both painful gums and toothache. We performed fine-mapping and identified causal variants at each novel locus. Further functional annotation based on multi-omics data suggested IL10 and IL12A/TRIM59 as potential candidate genes at the novel pleiotropic loci, respectively. Subsequent analyses of pathway enrichment and protein-protein interaction networks suggested the involvement of candidate genes at genome-wide significant loci in immune regulation.Conclusions: Our results highlighted the importance of immune regulation in the pathogenesis of oral inflammatory diseases. Some common immune-related pleiotropic loci or genetic variants are shared by multiple oral inflammatory traits. These findings will be beneficial for risk prediction, prevention, and therapy of oral inflammatory diseases.


2013 ◽  
Vol 34 (7) ◽  
pp. 1520-1528 ◽  
Author(s):  
Y. Zheng ◽  
T. O. Ogundiran ◽  
A. G. Falusi ◽  
K. L. Nathanson ◽  
E. M. John ◽  
...  

2020 ◽  
Vol 36 (18) ◽  
pp. 4749-4756 ◽  
Author(s):  
Alexey A Shadrin ◽  
Oleksandr Frei ◽  
Olav B Smeland ◽  
Francesco Bettella ◽  
Kevin S O'Connell ◽  
...  

Abstract Motivation Determining the relative contributions of functional genetic categories is fundamental to understanding the genetic etiology of complex human traits and diseases. Here, we present Annotation Informed-MiXeR, a likelihood-based method for estimating the number of variants influencing a phenotype and their effect sizes across different functional annotation categories of the genome using summary statistics from genome-wide association studies. Results Extensive simulations demonstrate that the model is valid for a broad range of genetic architectures. The model suggests that complex human phenotypes substantially differ in the number of causal variants, their localization in the genome and their effect sizes. Specifically, the exons of protein-coding genes harbor more than 90% of variants influencing type 2 diabetes and inflammatory bowel disease, making them good candidates for whole-exome studies. In contrast, &lt;10% of the causal variants for schizophrenia, bipolar disorder and attention-deficit/hyperactivity disorder are located in protein-coding exons, indicating a more substantial role of regulatory mechanisms in the pathogenesis of these disorders. Availability and implementation The software is available at: https://github.com/precimed/mixer. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document