O-152 Investigation of the relationship of sperm motility and Kisspeptin in subfertile men

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
A Kocaman ◽  
B Ayas

Abstract Study question Does kisspeptin administration affect the motility parameters in sperm samples of subfertile cases? Summary answer Kisspeptin administration significantly increased gene expression levels related with sperm motility as well as intracellular calcium concentrations. What is known already Sperm motility problems are among the most important causes of male infertility. In recent years, a peptide named kisspeptin has been discovered that may have effects on sperm motility. Kisspeptin is known to trigger calcium release in hypothalamic neurons. In addition, kisspeptin administration increased sperm progressive motility in studies conducted on normozoospermic individuals. Furthermore, it is suggested that kisspeptin protein in seminal plasma is positively associated with semen quality. However, there is no evidence that how kisspeptin can affect sperm in men with infertility problems. Study design, size, duration This basic research study was an in vitro experimental approach involving the use of semen samples from an infertil cases between September to December in 2020. 40 men were included in both control and experimental groups. Participants/materials, setting, methods All analyses were performed on semen samples from 10 normozoospermic (NZ), 10 asthenozoospermic (AZ), 10 oligoasthenozoospermic (OAZ) and 10 oligoastenoteratozoospermic (OATZ) men, aging between (21-40) years. Basal serum and seminal kisspeptin levels were analyzed by ELISA. Sperm were divided into two groups. Kisspeptin-13 administered in vitro. KISS1, KISS1R, CATSPER1, AKAP4 gene expressions analyzed by qRT-PCR using 2−ΔΔCt algorithm. Intracellular calcium concentration was determined with floresence spectroflurometer and laser scanning confocal microscope. Main results and the role of chance The serum kisspeptin level of NZ was significantly higher than other groups (p < 0.05). The semen kisspeptin level was significantly higher than OAZ and OATZ (p < 0.05), but not in NZ (p > 0.05). Also, KISS1 gene expression was higher in AZ compared to other groups (p < 0.05). Biochemical and gene expression analysis of kisspeptin were consistent with each other. There was a significant increase in the expression of CATSPER1 gene in AZ compared to other groups (p < 0.05). Also, AKAP4 gene expression was significantly higher in OATZ compared to other groups (p < 0.05). No significant difference was documented for the expression of KISS1R (p > 0.05). Intracellular calcium was significantly increased in AZ and NZ after kisspeptin administration. The intracellular calcium increase is consistent with increased CATSPER1 gene expression levels in AZ. Kisspeptin administration may have a significant effect on sperm motility parameters. Limitations, reasons for caution The biochemical and gene expression levels of KISS1 were consistent. However, gene expression was explored at the mRNA level for CATSPER1 and AKAP4. The protein expression analyses of these genes may confirm the results. Also, using kisspeptin antagonists may strength the results of intracellular calcium analysis. Wider implications of the findings Kisspeptin treatment for individuals diagnosed with asthenozoospermia may have therapeutic results. KISS1 quantitation may be a determining factor for the subfertility in routine semen analysis. Trial registration number OMU KAEK 2019/462

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
B Ayas ◽  
A Kocaman

Abstract Study question Does electromagnetic field (EMF) effect sperm motility through CatSper calcium channels in rat? Summary answer 2100 MHz EMF may reduce sperm motility by acting on CatSper calcium channels. What is known already EMF exposure has become a serious concern in infertility patients. The effects of EMF through by using mobile phone and laptop have been explored previously, mostly focusing on sperm motility and DNA fragmentation. EMF activates the voltage gated calcium channels and increases calcium concentration. As a result of the EMA exposure, the sperm motility may increase. However, if this happens while sperms are in non-progressive motile phase in the epididymis, it may result with the depletion of limited energy stores. Sperms may become immotile and they can’t move forward in the progressive motile phase in the female reproductive system. Study design, size, duration This basic research study was an in vivo experimental approach involving the use of 50 male rats. Wistar-Albino rats (n = 10) weighing ∼320 –350g were included in each groups. The duration of EMF exposure was 1 hour per day for 28 days. Amlodipine (1 mg/kg, 28 days) was used as a calcium channel blocker. The experiment was held between July to December in 2020. 20 female rats were recruited for mating test. Participants/materials, setting, methods 50 rats were divided into five groups. Group 1; Pure control. Group 2; Sham. Group 3; EMF exposure, Group 4: EMF+Amlodipine, Group 5: Amlodipine positive control. After four weeks of exposure, rats were sacrificed and sperm were collected from cauda epididymis. Sperm motility parameters were analyzed. Intracellular calcium levels were determined with two different method, fluorescence spectrophotometer and laser scanning confocal microscope. Before sacrifice, rats were mated with female rats to evaluate mating ratios. Main results and the role of chance The mating score and live birth rates did not vary significantly among the groups (p > 0.05). The sperm motility (A+B, 47.62±16.92 versus 34.19±14.62) and intracellular calcium levels (2.46±0.20 versus 1.85±0.18) were significantly decreased in the EMF group (p < 0.05). The results of fluorescence spectrophotometer and laser scanning confocal microscopy with fluorescent attachment were consistent with each other. There were no significant differences found among the other groups in terms of investigated parameters. Statistical analysis was performed with Kruskal-Wallis test followed by the Dunn-Bonferroni’s test. Limitations, reasons for caution The Catsper 1, 2, 3, 4 gene expression levels are still under analyses. These gene expression levels will be helpful to understand possible changes of the sperm motility. The determination of other motility related gene expressions may strength the results. Wider implications of the findings: EMF exposure may have a significant effect on sperm motility parameters. Mobile phones carried very close to the reproductive organs may adversely affect the motility of sperm cells due to its emitted radiation levels Trial registration number Not applicable


2018 ◽  
Vol 33 (2) ◽  
pp. 85-89
Author(s):  
Brendon Pearce ◽  
Zainonesa Abrahams-October ◽  
Lettilia Xhakaza ◽  
Clifford Jacobs ◽  
Mongi Benjeddou

Abstract Background: Single nucleotide polymorphisms in promoter regions have been shown to alter the transcription of genes. Thus, SNPs in SLC22A2 can result in inter-individual variable response to medication. Methods: The objective of the study was to investigate the effect of the African-specific promoter polymorphisms on the SLC22A2 gene expression levels in vitro. These included rs572296424 and rs150063153, which have been previously identified in the Xhosa population of South Africa. The promoter region (300 bp) for the two haplotypes was cloned into the pGLOW promoterless GFP reporter vector. The GFP expression levels of each haplotype was determined in the HEK293 cells using a GlowMax Multi-Detection E7031 luminometer in the form of light emission. Results: The relative promoter activity suggests that no significant variation exists between the expression levels of the WT and -95 haplotypes and the -95 and -156 haplotypes (p=0.498). However, the relative promoter activity of the WT haplotype in comparison to the -156 haplotype displayed a significant difference in expression level (p=0.016). Conclusions: The data presented here show that the African-specific promoter polymorphisms can cause a decrease in the SLC22A2 gene expression levels in vitro, which in turn, may influence the pharmacokinetic profiles of cationic drugs.


Author(s):  
Chris A Glasbey ◽  
Thorsten Forster ◽  
Peter Ghazal

Digital images obtained by the laser scanning of spotted microarrays often include saturated pixel values. These arise when the scan settings are sufficiently high and some pixels exceed the limit L=65535 and are instead set to L. Failure to adjust for this censoring leads to biased estimates of gene expression levels. To impute censored values, we propose a linear model based on the principal components of uncensored spots on the same array. This is computationally fast, flexible to adapt to distinctive spot shapes and profiles on different arrays, and is shown to be more effective than the polynomial-hyperbolic model in correcting for the bias. The application to biological data demonstrates the potential for enhancing the dynamic range of detection. Fortran90 subroutines implementing these methods are available at http://www.bioss.ac.uk/~chris.


2018 ◽  
Vol 110 ◽  
pp. 79-85 ◽  
Author(s):  
R. Laguna-Barraza ◽  
M.J. Sánchez-Calabuig ◽  
A. Gutiérrez-Adán ◽  
D. Rizos ◽  
S. Pérez-Cerezales

Author(s):  
Nefise Kandemir ◽  
Sercan Kenanoglu ◽  
Murat Gultekin ◽  
Nuriye Gokce ◽  
Hilal Akalin ◽  
...  

Background Essential tremor (ET) is the most common movement disorder. Propranolol is a first-line medication for ET. We aimed to evaluate the effect of propranolol on the expression of poly (ADP-ribose) polymerase 1 (PARP1) and DNA polymerase beta (POLB) genes, which are known to be related to neurodegenerative diseases, in patients with ET. MethodsThirty-five healthy volunteers and thirty-five patients followed up with essential tremors were included in a non-randomized control experimental study. Expressions of PARP1 and POLB genes were compared between the control group and the patient group. In addition, pre- and post-treatment gene expression levels and Fahn-Tolosa-Marin tremor scale values of the patient group were compared after 8 weeks of propranolol treatment. The Wilcoxon rank and Mann Whitney U tests were used to analyze the data. ResultsAt baseline, PARP1 expression was significantly lower in the ET group than in the control group. (p<0.001). POLB gene expression was significantly higher in the pre-treatment ET group than in the controls (p<0.05). There was no significant difference in PARP1 expression levels before and after 8 weeks of propranolol treatment. POLB gene expression was significantly higher in the pre-treatment group than in the post-treatment group (p<0.001). ConclusionPropranolol significantly decreased POLB gene expression but there was no significant difference in PARP1 gene expression levels in the patient group, after 8 weeks of propranolol treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabrina Borchert ◽  
Pia-Maria Suckrau ◽  
Robert F. H. Walter ◽  
Michael Wessolly ◽  
Elena Mairinger ◽  
...  

Abstract Malignant pleural mesothelioma (MPM) is a rare, but aggressive tumor with dismal prognosis. Platinum-based chemotherapy is regularly used as part of multimodality therapy. The expression of metallothioneins (MT) has been identified as a reason for cisplatin resistance, which often leads to early therapy failure or relapse. Thus, knockdown of MT expression may improve response to cisplatin treatment. The MT gene- and protein expression of the MPM-cell lines MSTO-211H, NCI-H2052 and NCI-H2452 and the human fibroblast cell line MRC-5, as well as their sensitivity to cisplatin treatment have been evaluated. Knockdown of MT1A, 1B and 2A expression was induced by RNA interference. MT expression was measured using quantitative real-time PCR. An in vitro Assay based on enzyme activity was used to detect cell viability, necrosis and apoptosis before and after incubation with cisplatin. MT2A gene expression could be detected in all MPM cell lines, showing the highest expression in NCI-H2452 and NCI-H2052, whereas gene expression levels of MT1A and MT1B were low or absent. The immunohistochemically protein expression of MT-I/II reflect MT2A gene expression levels. Especially for MSTO-211H cell presenting low initial MT2A levels, a strong induction of MT2A expression could be observed during cisplatin treatment, indicating a cell line-specific and platin-dependent adaption mechanism. Additionally, a MT2A-dependent cellular evasion of apoptosis during cisplatin could be observed, leading to three different MT based phenotypes. MSTO-211H cells showed lower apoptosis rates at an increased expression level of MT2A after cisplatin treatment (from sixfold to fourfold). NCI-H2052 cells showed no changes in MT2A expression, while apoptosis rate is the highest (8–12-fold). NCI-H2452 cells showed neither changes in alteration rate of MT2A expression nor changes in apoptosis rates, indicating an MT2A-independent resistance mechanism. Knockdown of MT2A expression levels resulted in significantly induced apoptotic rates during cisplatin treatment with strongest induction of apoptosis in each of the MPM cell lines, but in different markedness. A therapeutic meaningful effect of MT2A knockdown and subsequent cisplatin treatment could be observed in MSTO-211H cells. The present study showed MT2A to be part of the underlying mechanism of cisplatin resistance in MPM. Especially in MSTO-211H cells we could demonstrate major effects by knockdown of MT2A expression, verifying our hypothesis of an MT driven resistance mechanism. We could prove the inhibition of MT2A as a powerful tool to boost response rates to cisplatin-based therapy in vitro. These data carry the potential to enhance the clinical outcome and management of MPM in the future.


2006 ◽  
Vol 18 (2) ◽  
pp. 134
Author(s):  
S. Kurosaka ◽  
N. A. Leu ◽  
K. J. McLaughlin

Mammalian somatic cell clones frequently exhibit abnormal gene expression that presumably results from errors in reprogramming of the transplanted genome. In the mouse, aggregation of 4-cell stage clones with each other improves reprogramming with respect to Oct-4 expression in blastocysts and an increase in term development (Boiani et al. 2003 EMBO J. 22, 5304-5312). To determine if clone-clone aggregation has a similar beneficial effect in the bovine, we aggregated 8-16 cell bovine clones with each other and profiled gene expression levels in bovine clones and clone-clone aggregates at the blastocyst stage. Clone embryos were produced from fibroblasts and cultured in vitro in SOF supplemented with fetal bovine serum at 39�C in an atmosphere of 5% CO2, 5% O2, and 90% N2. For aggregation of embryos, we first removed the zonae pepellucidae by treatment with 0.5% pronase at the 8-16 cell stage and then placed two zona-free embryos per well into deep microwells produced on the bottom of a culture dish by pressing a heated darning needle onto the surface. Seven to 10 microwells in close proximity were covered by a culture 50-�L drop of culture medium, and embryos were cultured until Day 7. Real-time RT-PCR analysis for Oct-4, DNA methyltransferase 1 (Dnmt1), Dnmt3, glucose transporter 1 (Glut1), Glut3, and Poly(A) polymerase (PolyA) was performed on reusable Dynabead Oligo (dT)25-cDNA libraries synthesized from individual blastocysts at Day 7. In vitro-fertilized embryos were used as controls. To compare the variation of gene expression in each embryo within the group, the coefficient of variation (COV; standard deviation/mean) was calculated. Although spatial distribution of Oct-4 transcript is normal in bovine blastocyst stage clones (Kurosaka et al. 2004 Reprod. Fertil. Dev. 16, 147), we detected disturbances in the level of Oct-4 expression in clones: 44.4% (8 of 18) of clones expressed Oct-4 within a range of 0.5- and 1.5-fold of the average level of expression in IVF embryos, compared to 81.8% (9 of 11) of IVF embryos. Only 22.2% (4 of 18) of clones expressed all genes examined within a range of 0.5- and 2.0-fold of the average level of IVF embryos, versus 45.5% (5 of 11) of IVF embryos. Clone-clone aggregation did not increase the proportion of clones with normal expression levels but did reduce the coefficient of variation of gene expression levels between individual clones for the genes Oct-4, Dnmt1, Dnmt3a and PolyA, but not for Glut1 and Glut3. Interestingly, bovine clone-clone aggregates (n = 25) had less variation between individual embryos compared to IVF aggregates (n = 11) for all genes except Glut1 and Glut3, although variation of single clones was larger than that of single IVF embryos. Analysis of Oct-4 and �-Actin transcripts in mouse clone blastocysts indicated a similar decrease in gene expression variation subsequent to aggregation of mouse clones. These results demonstrate that bovine pre-implantation stage clones exhibit a high degree of variation in gene expression levels and suggest that aggregation of clones is beneficial in reducing the variation in expression of some genes.


2016 ◽  
Vol 10_2016 ◽  
pp. 64-72
Author(s):  
Safronova N.A. Safronova ◽  
Kalinina E.A. Kalinina ◽  
Donnikov A.E. Donnikov ◽  
Burmenskaya O.V. Burmenskaya ◽  
Makarova N.P. Makarova ◽  
...  

Author(s):  
T. R. Kannaki ◽  
P. C. Verma ◽  
M. R. Reddy ◽  
M. Shanmugam

TLR repertoire of duck, profiling of their mRNA expression in a range of duckling tissues and cytokine gene expressions upon TLR agonists stimulation in in vitro assay have been investigated. All ten TLR genes orthologous to chicken TLR repertoire were found in duck. Duck TLR genes showed 77-83% similarity at amino acid level to their chicken counterparts. All ten TLRs-TLR1LA, 1LB, 2A, 2B, 3, 4, 5, 7, 15 and 21 mRNA expressions were significantly higher in bursa than other tissues studied, whereas in muscle all TLRs mRNA expressions were significantly lower except for TLR15 (P>0.01). TLR7 gene expression was significantly higher in spleen, bursa and also in lung tissues (P>0.01). The cytokine gene expression levels in duck PBMCs upon LPS and poly I:C stimulation have been quantified. IL-1g gene expression level in LPS stimulated duck PBMC culture was significantly higher at both 12 h and 24 h time intervals (P>0.05). However, there were no significant changes in IFN-ã gene expression levels in poly I:C stimulated duck PBMC culture at both the intervals. TLR gene expression in young ducklings together with cytokine response upon LPS stimulation demonstrates the innate preparedness of younger birds to encounter pathogens and their functional ability to respond to their ligands.


Sign in / Sign up

Export Citation Format

Share Document