scholarly journals Impact of metallothionein-knockdown on cisplatin resistance in malignant pleural mesothelioma

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sabrina Borchert ◽  
Pia-Maria Suckrau ◽  
Robert F. H. Walter ◽  
Michael Wessolly ◽  
Elena Mairinger ◽  
...  

Abstract Malignant pleural mesothelioma (MPM) is a rare, but aggressive tumor with dismal prognosis. Platinum-based chemotherapy is regularly used as part of multimodality therapy. The expression of metallothioneins (MT) has been identified as a reason for cisplatin resistance, which often leads to early therapy failure or relapse. Thus, knockdown of MT expression may improve response to cisplatin treatment. The MT gene- and protein expression of the MPM-cell lines MSTO-211H, NCI-H2052 and NCI-H2452 and the human fibroblast cell line MRC-5, as well as their sensitivity to cisplatin treatment have been evaluated. Knockdown of MT1A, 1B and 2A expression was induced by RNA interference. MT expression was measured using quantitative real-time PCR. An in vitro Assay based on enzyme activity was used to detect cell viability, necrosis and apoptosis before and after incubation with cisplatin. MT2A gene expression could be detected in all MPM cell lines, showing the highest expression in NCI-H2452 and NCI-H2052, whereas gene expression levels of MT1A and MT1B were low or absent. The immunohistochemically protein expression of MT-I/II reflect MT2A gene expression levels. Especially for MSTO-211H cell presenting low initial MT2A levels, a strong induction of MT2A expression could be observed during cisplatin treatment, indicating a cell line-specific and platin-dependent adaption mechanism. Additionally, a MT2A-dependent cellular evasion of apoptosis during cisplatin could be observed, leading to three different MT based phenotypes. MSTO-211H cells showed lower apoptosis rates at an increased expression level of MT2A after cisplatin treatment (from sixfold to fourfold). NCI-H2052 cells showed no changes in MT2A expression, while apoptosis rate is the highest (8–12-fold). NCI-H2452 cells showed neither changes in alteration rate of MT2A expression nor changes in apoptosis rates, indicating an MT2A-independent resistance mechanism. Knockdown of MT2A expression levels resulted in significantly induced apoptotic rates during cisplatin treatment with strongest induction of apoptosis in each of the MPM cell lines, but in different markedness. A therapeutic meaningful effect of MT2A knockdown and subsequent cisplatin treatment could be observed in MSTO-211H cells. The present study showed MT2A to be part of the underlying mechanism of cisplatin resistance in MPM. Especially in MSTO-211H cells we could demonstrate major effects by knockdown of MT2A expression, verifying our hypothesis of an MT driven resistance mechanism. We could prove the inhibition of MT2A as a powerful tool to boost response rates to cisplatin-based therapy in vitro. These data carry the potential to enhance the clinical outcome and management of MPM in the future.

2018 ◽  
Vol 110 ◽  
pp. 79-85 ◽  
Author(s):  
R. Laguna-Barraza ◽  
M.J. Sánchez-Calabuig ◽  
A. Gutiérrez-Adán ◽  
D. Rizos ◽  
S. Pérez-Cerezales

PLoS ONE ◽  
2014 ◽  
Vol 9 (9) ◽  
pp. e107166 ◽  
Author(s):  
Minal Çalışkan ◽  
Jonathan K. Pritchard ◽  
Carole Ober ◽  
Yoav Gilad

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1275-1275
Author(s):  
Sonja C Lück ◽  
Annika C Russ ◽  
Konstanze Döhner ◽  
Ursula Botzenhardt ◽  
Domagoj Vucic ◽  
...  

Abstract Abstract 1275 Poster Board I-297 Core binding factor (CBF) leukemias, characterized by translocations t(8;21) or inv(16)/t(16;16) targeting the core binding factor, constitute acute myeloid leukemia (AML) subgroups with favorable prognosis. However, 40-50% of patients relapse, and the current classification system does not fully reflect the heterogeneity existing within the cytogenetic subgroups. Therefore, illuminating the biological mechanisms underlying these differences is important for an optimization of therapy. Previously, gene expression profiling (GEP) revealed two distinct CBF leukemia subgroups displaying significant outcome differences (Bullinger et al., Blood 2007). In order to further characterize these GEP defined CBF subgroups, we again used gene expression profiles to identify cell line models similar to the respective CBF cohorts. Treatment of these cell lines with cytarabine (araC) revealed a differential response to the drug as expected based on the expression patterns reflecting the CBF subgroups. In accordance, the cell lines resembling the inferior outcome CBF cohort (ME-1, MONO-MAC-1, OCI-AML2) were less sensitive to araC than those modeling the good prognostic subgroup (Kasumi-1, HEL, MV4-11). A previous gene set enrichment analysis had identified the pathways Caspase cascade in apoptosis and Role of mitochondria in apoptotic signaling among the most significant differentially regulated BioCarta pathways distinguishing the two CBF leukemia subgroups. Thus, we concluded that those pathways might be interesting targets for specific intervention, as deregulated apoptosis underlying the distinct subgroups should also result in a subgroup specific sensitivity to apoptotic stimuli. Therefore, we treated our model cell lines with the Smac mimetic BV6, which antagonizes inhibitor of apoptosis (IAP) proteins that are differentially expressed among our CBF cohorts. In general, sensitivity to BV6 treatment was higher in the cell lines corresponding to the subgroup with good outcome. Time-course experiments with the CBF leukemia cell line Kasumi-1 suggested a role for caspases in this response. Interestingly, combination treatment of araC and BV6 in Kasumi-1 showed a synergistic effect of these drugs, with the underlying mechanisms being currently further investigated. Based on the promising sensitivity to BV6 treatment in some cell lines, we next treated mononuclear cells (mostly leukemic blasts) derived from newly diagnosed AML patients with BV6 in vitro to evaluate BV6 potency in primary leukemia samples. Interestingly, in vitro BV6 treatment also discriminated AML cases into two distinct populations. Most patient samples were sensitive to BV6 monotherapy, but about one-third of cases were resistant even at higher BV6 dosage. GEP of BV6 sensitive patients (at 24h following either BV6 or DMSO treatment) provided insights into BV6-induced pathway alterations in the primary AML patient samples, which included apoptosis-related pathways. In contrast to the BV6 sensitive patients, GEP analyses of BV6 resistant cases revealed no differential regulation of apoptosis-related pathways in this cohort. These results provide evidence that targeting deregulated apoptosis pathways by Smac mimetics might represent a promising new therapeutic approach in AML and that GEP might be used to predict response to therapy, thereby enabling novel individual risk-adapted therapeutic approaches. Disclosures Vucic: Genentech, Inc.: Employment. Deshayes:Genentech, Inc.: Employment.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e14544-e14544
Author(s):  
Eva Budinska ◽  
Jenny Wilding ◽  
Vlad Calin Popovici ◽  
Edoardo Missiaglia ◽  
Arnaud Roth ◽  
...  

e14544 Background: We identified CRC gene expression subtypes (ASCO 2012, #3511), which associate with established parameters of outcome as well as relevant biological motifs. We now substantiate their biological and potentially clinical significance by linking them with cell line data and drug sensitivity, primarily attempting to identify models for the poor prognosis subtypes Mesenchymal and CIMP-H like (characterized by EMT/stroma and immune-associated gene modules, respectively). Methods: We analyzed gene expression profiles of 35 publicly available cell lines with sensitivity data for 82 drug compounds, and our 94 cell lines with data on sensitivity for 7 compounds and colony morphology. As in vitro, stromal and immune-associated genes loose their relevance, we trained a new classifier based on genes expressed in both systems, which identifies the subtypes in both tissue and cell cultures. Cell line subtypes were validated by comparing their enrichment for molecular markers with that of our CRC subtypes. Drug sensitivity was assessed by linking original subtypes with 92 drug response signatures (MsigDB) via gene set enrichment analysis, and by screening drug sensitivity of cell line panels against our subtypes (Kruskal-Wallis test). Results: Of the cell lines 70% could be assigned to a subtype with a probability as high as 0.95. The cell line subtypes were significantly associated with their KRAS, BRAF and MSI status and corresponded to our CRC subtypes. Interestingly, the cell lines which in matrigel created a network of undifferentiated cells were assigned to the Mesenchymal subtype. Drug response studies revealed potential sensitivity of subtypes to multiple compounds, in addition to what could be predicted based on their mutational profile (e.g. sensitivity of the CIMP-H subtype to Dasatinib, p<0.01). Conclusions: Our data support the biological and potentially clinical significance of the CRC subtypes in their association with cell line models, including results of drug sensitivity analysis. Our subtypes might not only have prognostic value but might also be predictive for response to drugs. Subtyping cell lines further substantiates their significance as relevant model for functional studies.


2019 ◽  
Vol 37 (7_suppl) ◽  
pp. 415-415
Author(s):  
Yuji Takeyama ◽  
Minoru Kato ◽  
Yasuomi Shimizu ◽  
Kosuke Hamada ◽  
Taro Iguchi ◽  
...  

415 Background: The emergence of immune checkpoint inhibitors (ICI) has brought hope for cure and survival for those suffering from various cancers, including bladder cancer. However, the response rate of ICI monotherapy is modest, and recent reports indicate that myeloid-derived suppressor cells (MDSC) might play a role in the resistant mechanism of ICI. In this study, we assess the effect of chemokine signal on the proliferation of bladder cancer and investigate whether MDSC could be a new target for the treatment of cisplatin-resistant bladder cancer. Methods: We established a cisplatin resistant strain (MB49R) of mice bladder cancer cell line MB49, and examined the alteration of the expression levels of inflammatory chemokines by chemokine array. Next, we isolated MDSCs from spleen and tumor in tumor-bearing mice to examine gene expression levels of chemokine receptors (CXCR2 and CCR2) and immunosuppression genes (Arg-1 and iNOS). Furthermore, we assessed the efficacy of CDDP, α-PD-L1 and chemokine antagonists against the proliferation of tumors in MB49 and MB49R xenograft models. Results: Expression levels of CCL2 and CXCL1/2, which are involved in the migration of MDSC, were significantly increased in the culture supernatant of MB49R compared to those in MB49 cell lines. This result was confirmed by real-time RT-qPCR of tumor extract, and this increase was also observed in human bladder cancer cell lines (T24 and T24R). CXCR2 and CCR2 were highly expressed in PMN-MDSC and M-MDSC, respectively, which were isolated from spleen or tumors in tumor-bearing mice, and gene expression levels of Arg-1 and iNOS were dramatically increased in M-MDSCs from the tumor tissues compared to those from spleen. Also, analysis by flow cytometry revealed that PMN-MDSC dramatically decreased in MB49R compared to parental MB49 tumors, while the proportion of M-MDSC was not changed in MB49R, which indicates that M-MDSC could be a target for the treatment of CDDP resistant bladder cancer. Conclusions: The results in the present study might indicate that the combination treatment with ICI and MDSC-targeting therapy could be an option for the treatment of cisplatin-resistant bladder cancer.


2018 ◽  
Author(s):  
Matthew M. Crane ◽  
Bryan Sands ◽  
Christian Battaglia ◽  
Brock Johnson ◽  
Soo Yun ◽  
...  

AbstractIntrons can increase gene expression levels using a variety of mechanisms collectively referred to as Intron Mediated Enhancement (IME). To date, the magnitude of IME has been quantified in human cell culture and plant models by comparing intronless reporter gene expression levels to those of intron-bearing reporter genes in vitro (mRNA, Western Blots, protein activity), using genome editing technologies that lacked full control of locus and copy number. Here, for the first time, we quantified IME in vivo, in terms of protein expression levels, using fluorescent reporter proteins expressed from a single, defined locus in Caenorhabditis elegans. To quantify the magnitude of IME, we developed a microfluidic chip-based workflow to mount and image individual animals, including software for operation and image processing. We used this workflow to systematically test the effects of position, number and sequence of introns on two different proteins, mCherry and mEGFP, driven by two different promoters, vit-2 and hsp-90. We found the three canonical synthetic introns commonly used in C. elegans transgenes increased mCherry protein concentration by approximately 50%. The naturally-occurring introns found in hsp-90 also increased mCherry expression level by about 50%. Furthermore, and consistent with prior results examining mRNA levels, protein activity or phenotypic rescue, we found that a single, natural or synthetic, 5’ intron was sufficient for the full IME effect while a 3’ intron was not. IME was also affected by protein coding sequence (50% for mCherry and 80% for mEGFP) but not strongly affected by promoter 46% for hsp-90 and 54% for the stronger vit-2. Our results show that IME of protein expression in C. elegans is affected by intron position and contextual coding sequence surrounding the introns, but not greatly by promoter strength. Our combined controlled transgenesis and microfluidic screening approach should facilitate screens for factors affecting IME and other intron-dependent processes.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4571
Author(s):  
Gloria M. Calaf ◽  
Leodan A. Crispin ◽  
Debasish Roy ◽  
Francisco Aguayo ◽  
Juan P. Muñoz ◽  
...  

This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.


Sign in / Sign up

Export Citation Format

Share Document