P-181 Morphine regulates BMP4 growth factor and is involved in in-vitro early embryo development and PGCs formation

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10-5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases. Trial registration number not applicable

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10–5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings: Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases Trial registration number Not applicable


2020 ◽  
Vol 21 (15) ◽  
pp. 5365 ◽  
Author(s):  
Mohammad Mehedi Hasan ◽  
Janeli Viil ◽  
Freddy Lättekivi ◽  
James Ord ◽  
Qurat Ul Ain Reshi ◽  
...  

While follicular fluid (FF) is well known to provide an optimal environment for oogenesis, its functional roles following its release into the oviduct during ovulation are currently elusive. We hypothesized that FF and FF-derived extracellular vesicles (EVs) may be conveyors of signals capable of inducing functionally-relevant transcriptional responses in oviductal cells. The aim of this study was, therefore, to evaluate the effect of FF and FF-derived EVs on the transcriptome of primary bovine oviductal epithelial cells (BOECs). We examined the gene expression of BOECs in three conditions: BOECs cultured with FF, FF-derived EVs, and without supplementations. For each condition, cells were cultured for 6 and 24 h. RNA sequencing results revealed that FF had a stronger effect on BOECs gene expression compared to EVs. We detected 488 and 1998 differentially expressed genes (DEGs) with FF treatment in 6 and 24 h, respectively, whereas only 41 DEGs were detected at 6 h following EV treatment. Pathway analysis of the FF-induced DEGs showed that several pathways were highly enriched, notably oxidative phosphorylation, thermogenesis, arachidonic acid metabolism, and steroid hormone biosynthesis. Some of these pathways have a role in sperm survival, fertilization, and early embryo development. In conclusion, the findings of our study demonstrate for the first time that bovine FF and FF-derived EVs can induce changes in the gene expression of the bovine oviductal cells which, although observed in vitro, may be reflective of in vivo responses which may contribute to a favorable periconceptional microenvironment for sperm survival, fertilization, and early embryo development.


2008 ◽  
Vol 20 (1) ◽  
pp. 179
Author(s):  
M. Clemente ◽  
P. Lonergan ◽  
C. Borque ◽  
J. de La Fuente ◽  
D. Rizos

Preimplatation embryos grown in vitro are sensitive to their environment, and the conditions of culture can affect developmental potential. Progesterone (P4) is the key hormone responsible for maintenance of pregnancy in mammals, and circulating levels in the early postconception period have been associated with pregnancy success. It is not clear whether P4 acts directly or indirectly on the embryo to alter gene expression and development. The aim of this study was to assess the effect of varying levels of exogenous P4 on the development of bovine zygotes to the blastocyst stage in vitro. A preliminary study was conducted to analyze the media used for culture (stock of P4, SOF, SOF + 1 × 10–7 M P4) on Days 1 (day of culture), 4, and 7 for P4 concentration in 25-μL droplets overlain with mineral oil or 500 μL in wells with or without mineral oil. P4 was measured using an ELISA kit, prepared for human serum or plasma (DE1561 Dimeditec Diagnostics GmbH, Kiel, Germany). Inter- and intra-assay coefficients of variation were 6.63 and 6.42%, respectively, and recovery was 95%. P4 concentration on Day 1 in all media was the expected (40 ng mL–1). However, on Days 4 and 7 in media under mineral oil, the level of P4 was nearly zero (0.1 to 1.6 ng mL–1) compared with the media without mineral oil, which remained unchanged (39 to 40 ng mL–1) through the 7 days of culture. Zygotes (n = 1467) were produced in 8 replicates by in vitro oocyte maturation and fertilization, and were cultured in groups of 40 to 50 in wells of 500 μL without mineral oil in (1) SOF supplemented with 5% fetal calf serum (control–), (2) SOF with ethanol (control+), (3) SOF with P4 0.1 × 10–7 M, (4) SOF with P4 1 × 10–7 M, and (5) SOF with P4 10 × 10–7 M at 39°C, 5% CO2 and 5% O2, with maximum humidity. No significant difference was found between groups in cleavage rate or blastocyst yield on Days 6, 7, and 8 (Table 1). These results indicate that the addition of P4 to the in vitro culture medium (SOF) did not enhance the development of bovine embryos to the blastocyst stage. However, further studies on the quality of these embryos in terms of gene expression are in preparation. Table 1. Effect of P4 on bovine in vitro early embryo development


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 222-231 ◽  
Author(s):  
V. Dinopoulou ◽  
G. A. Partsinevelos ◽  
D. Mavrogianni ◽  
E. Anagnostou ◽  
P. Drakakis ◽  
...  

Reproduction ◽  
2014 ◽  
Vol 148 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Eugenia Mercedes Luque ◽  
Pedro Javier Torres ◽  
Nicolás de Loredo ◽  
Laura María Vincenti ◽  
Graciela Stutz ◽  
...  

In order to clarify the physiological role of ghrelin in gestation, we evaluated the effects of administration of exogenous ghrelin (2 or 4 nmol/animal per day) or its antagonist (6 nmol/animal per day of (d-Lys3)GHRP6) on fertilization, early embryo development, and implantation periods in mice. Three experiments were performed, treating female mice with ghrelin or its antagonist: i) starting from 1 week before copulation to 12 h after copulation, mice were killed at day 18 of gestation; ii) since ovulation induction until 80 h later, when we retrieved the embryos from oviducts/uterus, and iii) starting from days 3 to 7 of gestation (peri-implantation), mice were killed at day 18. In experiments 1 and 3, the antagonist and/or the highest dose of ghrelin significantly increased the percentage of atrophied fetuses and that of females exhibiting this finding or a higher amount of corpora lutea compared with fetuses (nCL/nF) (experiment 3: higher nCL/nF-atrophied fetuses: ghrelin 4, 71.4–71.4% and antagonist, 75.0–62.5% vs ghrelin 2, 46.2−15.4% and control, 10–0.0%;n=7–13 females/group;P<0.01). In experiment 2, the antagonist diminished the fertilization rate, and both, ghrelin and the antagonist, delayed embryo development (blastocysts: ghrelin 2, 62.5%; ghrelin 4, 50.6%; and antagonist, 61.0% vs control 78.4%;n=82–102 embryos/treatment;P<0.0001). In experiment 3, additionally, ghrelin (4 nmol/day) and the antagonist significantly diminished the weight gain of fetuses and dams during pregnancy. Our results indicate that not only hyperghrelinemia but also the inhibition of the endogenous ghrelin effects exerts negative effects on the fertilization, implantation, and embryo/fetal development periods, supporting the hypothesis that ghrelin (in ‘adequate’ concentrations) has a physiological role in early gestational events.


Sign in / Sign up

Export Citation Format

Share Document