Gene Expression Changes During Human Early Embryo Development: New Applications for Embryo Selection

2013 ◽  
pp. 337-352
Author(s):  
Samir Hamamah ◽  
Said Assou ◽  
Imène Boumela ◽  
Hervé Dechaud
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
I Muñoa ◽  
M Araolaza-Lasa ◽  
I Urizar-Arenaza ◽  
M Gianzo Citores ◽  
N Subiran Ciudad

Abstract Study question To elucidate if morphine can alter embryo development. Summary answer Chronic morphine treatment regulates BMP4 growth factor, in terms of gene expression and H3K27me3 enrichment and promotes in-vitro blastocysts development and PGC formation. What is known already BMP4 is a member of the bone morphogenetic protein family, which acts mainly through SMAD dependent pathway, to play an important role in early embryo development. Indeed, BMP4 enhances pluripotency in mouse embryonic stem cells (mESCs) and, specifically, is involved in blastocysts formation and primordial germ cells (PGCs) generation. Although, external morphine influence has been previously reported on the early embryo development, focus on implantation and uterus function, there is a big concern in understanding how environmental factors can cause stable epigenetic changes, which could be maintained during development and lead to health problems. Study design, size, duration First, OCT4-reported mESCs were chronically treated with morphine during 24h, 10–5mM. After morphine removal, mESCs were collected for RNA-seq and H3K27me3 ChIP-seq study. To elucidate the role of morphine in early embryo development, two cell- embryos stage were chronically treated with morphine for 24h and in-vitro cultured up to the blastocyst stage in the absence of morphine. Furthermore, after morphine treatment mESCs were differentiated to PGCs, to elucidate the role of morphine in PGC differentiation. Participants/materials, setting, methods Transcriptomic analyses and H3K27me3 genome wide distribution were carried out by RNA-Sequencing and Chip-Sequencing respectively. Validations were performed by RNA-RT-qPCR and Chip-RT-qPCR. Main results and the role of chance Dynamic transcriptional analyses identified a total of 932 differentially expressed genes (DEGs) after morphine treatment on mESCs, providing strong evidence of a transcriptional epigenetic effect induced by morphine. High-throughput screening approaches showed up Bmp4 as one of the main morphine targets on mESCs. Morphine caused an up-regulation of Bmp4 gene expression together with a decrease of H3K27me3 enrichment at promoter level. However, no significant differences were observed on gene expression and H3K27me3 enrichment on BMP4 signaling pathway components (such as Smad1, Smad4, Smad5, Smad7, Prdm1 and Prmd14) after morphine treatment. On the other hand, the Bmp4 gene expression was also up-regulated in in-vitro morphine treated blastocyst and in-vitro morphine treated PGCs. These results were consistent with the increase in blastocyst rate and PGC transformation rate observed after morphine chronic treatment. Limitations, reasons for caution To perform the in-vitro analysis. Further studies are needed to describe the whole signaling pathways underlying BMP4 epigenetic regulation after morphine treatment. Wider implications of the findings: Our findings confirmed that mESCs and two-cell embryos are able to memorize morphine exposure and promote both blastocyst development and PGCs formation through potentially BMP4 epigenetic regulation. These results provide insights understanding how environmental factors can cause epigenetic changes during the embryo development, leading to alterations and producing health problems/diseases Trial registration number Not applicable


2019 ◽  
Vol 31 (1) ◽  
pp. 157
Author(s):  
D. Bresnahan ◽  
E. Carnevale

Maternal metabolic status could affect fertility and early embryo development due to altered concentrations of metabolic hormones. Equine metabolic syndrome (EMS) is a condition in horses associated with obesity and insulin resistance. Equine metabolic syndrome is accompanied by increased concentrations of insulin and leptin and decreased concentrations of adiponectin, in ovarian follicular fluid (FF) and in systemic circulation (SYST). We sought to determine how altered concentrations of insulin, leptin, and adiponectin (ILA), consistent with those in mares with EMS (EMS) or normal mares (normal), would affect blastocyst formation rates, blastocyst gene expression for metabolism and inner cell mass formation (OCT4, SOX2, COX2, DNMT3a1, HK2, LDH, PDH, and GLUT1), and metabolite uptake from culture media. Because equine oocytes are not available for large-scale study, a bovine model was used in this preliminary study to determine the impact of altered ILA on oocytes and embryos. Bovine ovaries were obtained from an abattoir and embryos produced as previously described using chemically defined media (CDM; Barcelo-Fimbres and Seidel 2007Mol. Reprod. Dev. 74, 1406-1418). Briefly, oocytes were cultured in in vitro maturation medium (IVM), fertilized in FCDM, presumptive zygotes were placed into CDM-1 for ~56h. Cleavage rates were assessed, and embryos were moved to CDM-2 for ~122 additional hours. Treatments consisted of 5 groups: (1) standard oocyte IVM, FCDM and embryo production (EP) system (control), (2) IVM with normal FF ILA and control FCDM and EP, (3) IVM with normal FF ILA and FCDM and EP with normal SYST ILA, (4) IVM with EMS FF ILA and control FCDM and EP, and (5) IVM with EMS FF ILA and FCDM and EP with EMS SYST ILA. Seven days after fertilization, blastocysts were pooled in groups of 5 and placed into 50mL of CDM-2 for 24h. Embryos were removed, and medium was frozen and stored at −80°C to determine metabolite usage via gas chromatography mass spectroscopy. Pooled embryos were washed and placed into RNA lysis solution for relative quantitative PCR. Statistical comparisons were performed using ANOVA with a post-hoc Tukey test. Blastocyst formation rates and gene expression of viability markers were not significantly different among groups. However, aspartate was lower (P=0.02) in spent media from Group 3 (normal FF and SYST ILA) and tended (P=0.09) to be lower in media from Group 5 (EMS FF and SYST ILA) when compared with controls (Group 1). The ILA during early embryo development but not oocyte maturation appeared to be associated with increased uptake of aspartate, a nonessential amino acid, thought to be involved in osmoregulation, cellular signalling, and in mouse embryos, facilitate the metabolism of lactate. In conclusion, the addition of ILA in concentrations observed in normal horses and EMS horses did not affect blastocyst formation rates or markers of embryo viability, although embryo metabolism could have been altered.


2009 ◽  
Vol 21 (9) ◽  
pp. 49
Author(s):  
T. Fullston ◽  
M. Mitchell ◽  
S. Wakefield ◽  
A. Filby ◽  
M. Lane

Environmental stress can disrupt mitochondrial function in the pre-implantation embryo, subsequently hindering embryo viability. Brain tissue is also sensitive to developmental perturbations, and we have previously discovered genes involved in neurological function and epigenetic modification are differentially expressed in blastocysts following mitochondrial dysfunction by amino-oxyacetate (AOA). In this study CBAxC57Bl6 2 cell stage mouse embryos were cultured in 5μM-AOA without pyruvate for 72h to induce mitochondrial dysfunction. Blastocyst stage embryos were then transferred to pseudopregnant recipients and the expression profile of day 18 foetal brains was interrogated using microarray. mRNA from mouse whole brain (4 per treatment) was extracted and analysed using an Affymetrix gene array. Ingenuity Pathway Analysis software identified persistent alterations in gene expression pathways in foetal brain after AOA treatment during embryo culture, that were subsequently confirmed by qPCR. Expression was significantly increased by both array and qPCR (>1.5 fold, p<0.05) for; 1) Eomes (1.9, 2.9 fold respectively), a T-box transcription factor involved in differentiation, cell death and development, 2) Nr4a3 (1.8, 2.2 fold respectively), a steroid hormone receptor and putative transcriptional activator and 3) Nola3 (1.7, 1.9 fold respectively), a small nucleolar ribonucleoprotein involved in rRNA processing. Neurological disease, behavioural disorders, carbohydrate metabolism, cellular growth and proliferation, cell death, DNA replication, recombination and repair pathways also showed altered gene expression (>1.25 fold). qPCR was performed on 28 genes exhibiting the greatest change in expression. 24/28 genes confirmed the array data, and of the 4 genes that did not; two had expression not detected by qPCR (Snhg1, Speer6-ps1), and two contradicted array results (Atp1b3 p=0.05, Stk38l p=0.06). This study links mitochondrial dysfunction during early embryo development and persistent molecular changes in the developing foetal brain. This indicates that insults incurred during early embryo development can cause permanent changes that we predict results from aberrant epigenetic modification.


2020 ◽  
Vol 21 (15) ◽  
pp. 5365 ◽  
Author(s):  
Mohammad Mehedi Hasan ◽  
Janeli Viil ◽  
Freddy Lättekivi ◽  
James Ord ◽  
Qurat Ul Ain Reshi ◽  
...  

While follicular fluid (FF) is well known to provide an optimal environment for oogenesis, its functional roles following its release into the oviduct during ovulation are currently elusive. We hypothesized that FF and FF-derived extracellular vesicles (EVs) may be conveyors of signals capable of inducing functionally-relevant transcriptional responses in oviductal cells. The aim of this study was, therefore, to evaluate the effect of FF and FF-derived EVs on the transcriptome of primary bovine oviductal epithelial cells (BOECs). We examined the gene expression of BOECs in three conditions: BOECs cultured with FF, FF-derived EVs, and without supplementations. For each condition, cells were cultured for 6 and 24 h. RNA sequencing results revealed that FF had a stronger effect on BOECs gene expression compared to EVs. We detected 488 and 1998 differentially expressed genes (DEGs) with FF treatment in 6 and 24 h, respectively, whereas only 41 DEGs were detected at 6 h following EV treatment. Pathway analysis of the FF-induced DEGs showed that several pathways were highly enriched, notably oxidative phosphorylation, thermogenesis, arachidonic acid metabolism, and steroid hormone biosynthesis. Some of these pathways have a role in sperm survival, fertilization, and early embryo development. In conclusion, the findings of our study demonstrate for the first time that bovine FF and FF-derived EVs can induce changes in the gene expression of the bovine oviductal cells which, although observed in vitro, may be reflective of in vivo responses which may contribute to a favorable periconceptional microenvironment for sperm survival, fertilization, and early embryo development.


2008 ◽  
Vol 20 (1) ◽  
pp. 179
Author(s):  
M. Clemente ◽  
P. Lonergan ◽  
C. Borque ◽  
J. de La Fuente ◽  
D. Rizos

Preimplatation embryos grown in vitro are sensitive to their environment, and the conditions of culture can affect developmental potential. Progesterone (P4) is the key hormone responsible for maintenance of pregnancy in mammals, and circulating levels in the early postconception period have been associated with pregnancy success. It is not clear whether P4 acts directly or indirectly on the embryo to alter gene expression and development. The aim of this study was to assess the effect of varying levels of exogenous P4 on the development of bovine zygotes to the blastocyst stage in vitro. A preliminary study was conducted to analyze the media used for culture (stock of P4, SOF, SOF + 1 × 10–7 M P4) on Days 1 (day of culture), 4, and 7 for P4 concentration in 25-μL droplets overlain with mineral oil or 500 μL in wells with or without mineral oil. P4 was measured using an ELISA kit, prepared for human serum or plasma (DE1561 Dimeditec Diagnostics GmbH, Kiel, Germany). Inter- and intra-assay coefficients of variation were 6.63 and 6.42%, respectively, and recovery was 95%. P4 concentration on Day 1 in all media was the expected (40 ng mL–1). However, on Days 4 and 7 in media under mineral oil, the level of P4 was nearly zero (0.1 to 1.6 ng mL–1) compared with the media without mineral oil, which remained unchanged (39 to 40 ng mL–1) through the 7 days of culture. Zygotes (n = 1467) were produced in 8 replicates by in vitro oocyte maturation and fertilization, and were cultured in groups of 40 to 50 in wells of 500 μL without mineral oil in (1) SOF supplemented with 5% fetal calf serum (control–), (2) SOF with ethanol (control+), (3) SOF with P4 0.1 × 10–7 M, (4) SOF with P4 1 × 10–7 M, and (5) SOF with P4 10 × 10–7 M at 39°C, 5% CO2 and 5% O2, with maximum humidity. No significant difference was found between groups in cleavage rate or blastocyst yield on Days 6, 7, and 8 (Table 1). These results indicate that the addition of P4 to the in vitro culture medium (SOF) did not enhance the development of bovine embryos to the blastocyst stage. However, further studies on the quality of these embryos in terms of gene expression are in preparation. Table 1. Effect of P4 on bovine in vitro early embryo development


2016 ◽  
Vol 28 (3) ◽  
pp. 375 ◽  
Author(s):  
Saffet Ozturk ◽  
Aylin Yaba-Ucar ◽  
Berna Sozen ◽  
Derya Mutlu ◽  
Necdet Demir

Embryonic poly(A)-binding protein (EPAB) and poly(A)-binding protein, cytoplasmic 1 (PABPC1) play critical roles in translational regulation of stored maternal mRNAs required for proper oocyte maturation and early embryo development in mammals. Superovulation is a commonly used technique to obtain a great number of oocytes in the same developmental stages in assisted reproductive technology (ART) and in clinical or experimental animal studies. Previous studies have convincingly indicated that superovulation alone can cause impaired oocyte maturation, delayed embryo development, decreased implantation rate and increased postimplantation loss. Although how superovulation results in these disturbances has not been clearly addressed yet, putative changes in genes related to oocyte and early embryo development seem to be potential risk factors. Thus, the aim of the present study was to determine the effect of superovulation on Epab and Pabpc1 gene expression. To this end, low- (5 IU) and high-dose (10 IU) pregnant mare’s serum gonadotropin (PMSG) and human chorionic gonadotrophin (hCG) were administered to female mice to induce superovulation, with naturally cycling female mice serving as controls. Epab and Pabpc1 gene expression in germinal vesicle (GV) stage oocytes, MII oocytes and 1- and 2-cell embryos collected from each group were quantified using quantitative reverse transcription–polymerase chain reaction. Superovulation with low or high doses of gonadotropins significantly altered Epab and Pabpc1 mRNA levels in GV oocytes, MII oocytes and 1- and 2-cell embryos compared with their respective controls (P < 0.05). These changes most likely lead to variations in expression of EPAB- and PABPC1-regulated genes, which may adversely influence the quality of oocytes and early embryos retrieved using superovulation.


Sign in / Sign up

Export Citation Format

Share Document