Mapping 3D structure of a Sargassum forest with high-resolution sounding data obtained by multibeam echosounder

Author(s):  
Masahiro Hamana ◽  
Teruhisa Komatsu

Abstract Sargassum forests play an important role in coastal waters as habitats for marine organisms, including commercial species. However, human activities have negatively affected their distribution causing a worldwide decline of Sargassum forests. Mapping and monitoring the distribution and biomass of these habitats using acoustic remote sensing techniques is key for their conservation. Nonetheless, most researches based on acoustic remote sensing methods focus on estimations of macrophyte area and its canopy height, and less researches reporting 3D visualization of these habitats. This study demonstrates the use of high-resolution multibeam echosounder (MBES) bathymetric data to visualize the 3D structure of Sargassum forests. Comparing acoustic data and underwater camera photos collected in field surveys, we identified Sargassum individuals as vertical clusters of contiguous sounding points with a base close to the sea bottom in the sounding data of the MBES. Using this criterion, we could distinguish Sargassum echoes, visualize the 3D structure of Sargassum forests and estimate the number of Sargassum individuals in the survey area. Using the relation between thallus length and dry weight of sampled Sargassum plants, standing stock and biomass could be estimated assuming the thallus length was the height of Sargassum plants identified with the MBES.

2020 ◽  
Vol 287 (1920) ◽  
pp. 20192383 ◽  
Author(s):  
Tim D'Urban Jackson ◽  
Gareth J. Williams ◽  
Guy Walker-Springett ◽  
Andrew J. Davies

Ecological processes occur over multiple spatial, temporal and thematic scales in three-dimensional (3D) ecosystems. Characterizing and monitoring change in 3D structure at multiple scales is challenging within the practical constraints of conventional ecological tools. Remote sensing from satellites and crewed aircraft has revolutionized broad-scale spatial ecology, but fine-scale patterns and processes operating at sub-metre resolution have remained understudied over continuous extents. We introduce two high-resolution remote sensing tools for rapid and accurate 3D mapping in ecology—terrestrial laser scanning and structure-from-motion photogrammetry. These technologies are likely to become standard sampling tools for mapping and monitoring 3D ecosystem structure across currently under-sampled scales. We present practical guidance in the use of the tools and address barriers to widespread adoption, including testing the accuracy of structure-from-motion models for ecologists. We aim to highlight a new era in spatial ecology that uses high-resolution remote sensing to interrogate 3D digital ecosystems.


2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

Author(s):  
Wenbing Yun ◽  
Steve Wang ◽  
David Scott ◽  
Kenneth W. Nill ◽  
Waleed S. Haddad

Abstract A high-resolution table-sized x-ray nanotomography (XRMT) tool has been constructed that shows the promise of nondestructively imaging the internal structure of a full IC stack with a spatial resolution better than 100 nm. Such a tool can be used to detect, localize, and characterize buried defects in the IC. By collecting a set of X-ray projections through the full IC (which may include tens of micrometers of silicon substrate and several layers of Cu interconnects) and applying tomographic reconstruction algorithms to these projections, a 3D volumetric reconstruction can be obtained, and analyzed for defects using 3D visualization software. XRMT is a powerful technique that will find use in failure analysis and IC process development, and may facilitate or supplant investigations using SEM, TEM, and FIB tools, which generally require destructive sample preparation and a vacuum environment.


The concept of exposome has received increasing discussion, including the recent Special Issue of Science –"Chemistry for Tomorrow's Earth,” about the feasibility of using high-resolution mass spectrometry to measure exposome in the body, and tracking the chemicals in the environment and assess their biological effect. We discuss the challenges of measuring and interpreting the exposome and suggest the survey on the life course history, built and ecological environment to characterize the sample of study, and in combination with remote sensing. They should be part of exposomics and provide insights into the study of exposome and health.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


Sign in / Sign up

Export Citation Format

Share Document