scholarly journals The relation between concentrations of ovarian trace elements and the body size of Atlantic cod Gadus morhua

2008 ◽  
Vol 65 (7) ◽  
pp. 1191-1197 ◽  
Author(s):  
A. Bang ◽  
P. Grønkjær ◽  
B. Lorenzen

Abstract Bang, A., Grønkjær, P., and Lorenzen, B. 2008. The relation between concentrations of ovarian trace elements and the body size of Atlantic cod Gadus morhua. – ICES Journal of Marine Science, 65: 1191–1197. Trace metals in the ovaries of fish are transferred from the female via the yolk to the offspring, which makes the early life stages susceptible to deleterious effects of potentially toxic elements contained in the ovaries. Here, the concentrations of 13 elements from the ovaries of 133 ripe female North Sea cod Gadus morhua weighing 0.2–18 kg were correlated with female size, accounting for differences in maturity and condition. Most elements were negatively correlated with the size variables weight, length and, especially, ovarian dry weight. Further, they were negatively correlated with maturity and condition. Many of the trace elements showed true size-dependence, but the correlations were generally weak. A linear discriminant analysis separated “small” and “large” fish at a length of 85 cm based on concentrations of Co, Mn, Se, and Zn, and correctly assigned 78 of 102 small fish and 23 of 31 large fish to their respective size category. This corresponds to an overall classification success of 75.9%. The results suggest that embryos and early larvae from small females are exposed to higher levels of potentially harmful metals. If the differences in trace element concentration influence survival success, this will add to the negative effects of size distribution truncation and declines in size-at-maturity experienced by many populations of cod.

1996 ◽  
Vol 199 (10) ◽  
pp. 2235-2242 ◽  
Author(s):  
E Drucker ◽  
J Jensen

Swimming trials at increasing velocity were used to determine the effects of steady swimming speed on pectoral fin kinematics for an ontogenetic series of striped surfperch Embiotoca lateralis, ranging from 6 to 23 cm in standard length (SL). The fin stroke cycle consisted of a propulsive period, the duration of fin abduction and adduction, and a 'refractory' period, during which the fin remained adducted against the body. Pectoral fin-beat frequency (fp) measured as the inverse of the entire stride period, as in past studies, increased curvilinearly with speed. Frequency, calculated as the reciprocal of the propulsive period alone, increased linearly with speed, as shown previously for tail-beat frequency of fishes employing axial undulation. Fin-beat amplitude, measured as the vertical excursion of the pectoral fin tip during abduction, increased over a limited range of low speeds before reaching a plateau at 0.35­0.40 SL. Pectoral fin locomotion was supplemented by intermittent caudal fin undulation as swimming speed increased. At the pectoral­caudal gait transition speed (Up-c), frequency and amplitude attained maxima, suggesting that the fin musculature reached a physiological limit. The effects of body size on swimming kinematics differed according to the method used for expressing speed. At a given absolute speed, small fish used higher stride frequencies and increased frequency at a faster rate than large fish. In contrast, the relationship between fp and length-specific speed (SL s-1) had a greater slope for large fish and crossed that for small fish at high speeds. We recommend that comparisons across size be made using speeds expressed as a percentage of Up-c, at which kinematic variables influencing thrust are size-independent.


1989 ◽  
Vol 67 (7) ◽  
pp. 1793-1800 ◽  
Author(s):  
S. L. Poynton ◽  
J. Lom

Trichodina murmanica Polyanskiy, 1955 (= Trichodina domerguei subsp. saintjohnsi Lom and Laird, 1969) and Trichodina cooperi n.sp. were commonly encountered on skin and fins of Atlantic cod, Gadus morhua L., near Halifax, Nova Scotia, Canada. A third species of Trichodina, probably new, was recorded from the skin of one fish. This is believed to be the first report of the genus Trichodina from the body surface of gadoid fish from eastern Canada, and the known geographic range of T. murmanica is extended. Trichodina cooperi n.sp. has an adoral ciliary spiral of 370–380° and is relatively large, the mean diameter of the body is 110 μm, of the adhesive disc (with dark center), 95 μm, and of the denticulate ring, 59 μm. The denticulate ring consists of 24–29 denticles (usually 27), with 7–9 radial pins per denticle. Each denticle has a broad blade, a large central part, and a slightly curved thorn of moderate to broad width, with a central rib when mature. The thorn is approximately twice the length of the blade. The horseshoe-shaped macronucleus has a diameter of 80.0 μm and the micronucleus is in the +y position. Trichodina spp. infected 26% of 39 wild fish 20 to < 60 cm long. Most wild fish yielded less than five ciliates per 24 × 50 mm smear.


2010 ◽  
Vol 67 (5) ◽  
pp. 866-876 ◽  
Author(s):  
Marion Harrald ◽  
Peter J. Wright ◽  
Francis C. Neat

The North Sea stock of Atlantic cod ( Gadus morhua ) is comprised of a number of subcomponents that differ both genetically and phenotypically. A potential cause for such spatial variability is adaptive divergence, which may be linked to differences in thermal environment and (or) historical fishing pressure. Here we present evidence that spatial variation in maturity–size relationships in the wild has a significant intrinsic component. Using a common-environment experiment on wild-caught juveniles raised through to maturity, we demonstrate that cod from the southern North Sea (SNS) mature at larger sizes than those from the northwestern North Sea (NWNS) despite broadly similar growth rates. Consistent with these experimental results, year-class-specific maturity ogives for recent maturing year classes (1999–2001) suggested that the length at which 50% of females reached maturity was 11 cm greater for SNS than for NWNS cod. Under a common environment, smaller female size at maturity partly reflected higher relative liver weight, with NWNS females having a higher relative liver weight than SNS females. By investigating maturation under controlled conditions, our study provides evidence for life history trade-offs in energy allocation between growth, energy storage, and reproduction that may underlie the spatial variation observed in the field.


1994 ◽  
Vol 51 (5) ◽  
pp. 1012-1023 ◽  
Author(s):  
Geir Blom ◽  
Terje Svåsand ◽  
Knut E. Jørstad ◽  
Håkon Otterå ◽  
Ole I. Paulsen ◽  
...  

Survival and growth of two strains of Atlantic cod (Gadus morhua) were compared through the larval and juvenile stages in a marine pond in western Norway in 1990 and 1991. Strain A was homozygous for the genetic marker allele GPI-1*30 at the glucose phosphate isomerase (GPI) locus expressed in white muscle, and Strain B possessed other GPI-1* genotypes, in 1990 the frequency of Strain B increased significantly from the larval to the juvenile stage; however, in 1991 the frequency of Strain A increased slightly but not significantly from the larval to the juvenile phase. Larval mortality did not differ significantly between strains any year, but juvenile mortality was significantly lower in Strain B in 1990 and Strain A in 1991. Average growth rates in length estimated from regressions were not significantly different between strains during the larval and juvenile period any year, but initial length was significantly larger in Strain B in 1990 and Strain A in 1991. Our results indicated that food limitation during the early juvenile stage induced differential size-selective mortality among the strains due to small differences in body size and actual age between strains. Body size did not become important for survival until the food-limited regime had occurred.


2014 ◽  
Vol 71 (4) ◽  
pp. 784-793 ◽  
Author(s):  
Darrell R. J. Mullowney ◽  
George A. Rose

Abstract The slow recovery of the “northern” Atlantic cod (Gadus morhua) stock off Newfoundland and Labrador has been ascribed to many factors. One hypothesis is poor feeding and condition as a consequence of a decline in capelin (Mallotus villosus), their former main prey. We compared the growth and condition of cod from known inshore (Smith Sound) and offshore (Bonavista Corridor) centres of rebuilding in wild subjects versus captive subjects fed an unlimited diet of oily rich fish. Wild fish in these areas have had different diets and population performance trends since stock declines in the early 1990s. Captive cod from both areas grew at the same rates and achieved equivalent prime condition, while their wild counterparts differed, with smaller sizes, lower condition in small fish, and elevated mortality levels in the offshore centre. Environmental temperature conditions did not account for the differences in performance of wild fish. Our results suggest that fish growth and condition, and hence rebuilding in the formerly large offshore spawning components of the northern cod, have been limited by a lack of capelin in their diet. Furthermore, we suggest that these groups are unlikely to rebuild until a recovery in capelin occurs.


2016 ◽  
Vol 73 (6) ◽  
pp. 1557-1569 ◽  
Author(s):  
D. de Haan ◽  
J. E. Fosseidengen ◽  
P. G. Fjelldal ◽  
D. Burggraaf ◽  
A. D. Rijnsdorp

Abstract In the North Sea flatfish fishery, electric pulse trawls have been introduced to replace the conventional mechanical method. Pulse trawls reduce the fuel consumption, reduce adverse impact on the ecosystem but cause injuries in gadoids. We describe the design and electrical properties of pulse trawls currently in use and study the behavioural response and injuries in cod exposed to electrical pulses under controlled conditions. Pulse trawls operate at an average power of 0.7 kW m−1 beam length and a duty cycle of ∼2%. The electric field is heterogeneous with highest field strength occurring close to the conductors. Cod were exposed to three different pulse types for a range of field strengths, frequencies, and duty cycles. Two size classes were tested representing cod that escape through the meshes (11–17 cm) and market-sized cod that are retained in the net (34–56 cm). Cod exposed to a field strength of ≥37 V m−1 responded by moderate-to-strong muscular contractions. Some of the large cod (n = 260) developed haemorrhages and fractures in the spine, and haemal and neural arches in the tail part of the body. The probability of injuries increased with field strength and decreased when frequency was increased from 100 to 180 Hz. None of the small cod (n = 132) were injured and all survived. The field strength at the lateral boundaries of the trawl was too low to inflict injuries in cod.


2017 ◽  
Author(s):  
Wolf U. Blanckenhorn

AbstractA Preprint reviewed and recommended by Peer Community Evolutionary Biology: http://dx.doi.org/10.24072/pci.evolbiol.100027Evidence for selective disadvantages of large body size remains scarce in general. Previous phenomenological studies of the yellow dung fly Scathophaga stercoraria have demonstrated strong positive sexual and fecundity selection on male and female size. Nevertheless, the body size of flies from a Swiss study population has declined by almost 10% from 1993 to 2009. Given substantial heritability of body size, this negative evolutionary response of an evidently positively selected trait suggests important selective factors being missed (e.g. size-selective predation or parasitism). A periodic epidemic outbreak of the fungus Entomophthora scatophagae allowedassessment of selection exerted by this parasite fatal to adult flies. Fungal infection varied over the season from ca. 50% in the cooler and more humid spring and autumn to almost 0% in summer. The probability of dying from fungal infection increased with adult body size. All infected females died before laying eggs, so there was no fungus impact on female fecundity beyond its impact on mortality. Large males showed the typical mating advantage in the field, but this pattern of positive sexual selection was nullified by fungal infection. Mean fluctuating asymmetry of paired appendages (legs, wings) did not affect the viability, fecundity or mating success of yellow dung flies in the field. This study demonstrates rare parasite-mediated disadvantages of large adult body size in the field. Reduced ability to combat parasites such as Entomophthora may be an immunity cost of large size in dung flies, although the hypothesized trade-off between fluctuating asymmetry, a presumed indicator of developmental instability and environmental stress, and immunocompetence was not found here.


2001 ◽  
Vol 138 (6) ◽  
pp. 1077-1085 ◽  
Author(s):  
Not Available Not Available ◽  
Not Available Not Available ◽  
Not Available Not Available

1997 ◽  
Vol 54 (12) ◽  
pp. 2955-2963 ◽  
Author(s):  
Jacques Allard ◽  
Ghislain A Chouinard

Discarding of small fish is considered to be an important conservation problem and has become illegal in some fisheries. We present a cost-efficient strategy to help enforce regulations against discarding. A discarding indicator is defined using the change in slope between two reference points on the empirical length-frequency density of the catch. This discarding indicator is then used according to the external distribution concept: the sampling distribution of the discarding indicator, when no discarding occurred, is obtained directly from samples taken by onboard observers; the value of the discarding indicator observed by onshore observers from a boat not covered by onboard observers is then compared with this sampling distribution. This procedure offers a nonparametric test for discarding. Application of the strategy is illustrated using data from the 1991 Atlantic cod (Gadus morhua) fishery in the southern Gulf of St. Lawrence. We describe several enforcement frameworks within which the method can be applied. The cost efficiency of the strategy comes from shifting resources from high-cost onboard observation to lower cost onshore observation.


2003 ◽  
Vol 60 (8) ◽  
pp. 929-937 ◽  
Author(s):  
Myron A Peck ◽  
Lawrence J Buckley ◽  
David A Bengtson

We examined the effects of body size (3–13 cm total length) and temperature (4.5, 8.0, 12.0, and 15.5 °C) on routine (RR) and feeding (RSDA) energy losses by laboratory-reared, young-of-year juvenile Atlantic cod (Gadus morhua). The magnitude of the effect of temperature on RR, expressed via the Q10, was nonlinear. Q10 values were greatest at temperatures between 4.5 and 8.0 °C and were lowest between 8.0 and 15.5 °C, with larger fish tending to exhibit the greatest change in RR irrespective of the temperature combination. Energy losses resulting from RSDA were ~4% of consumed energy, a value less than half that estimated for larger, year-1+ juvenile cod fed similar-sized rations. Data from this and other studies were combined to generate an equation estimating routine energy loss at different temperatures and body sizes for cod. The equation describes RR over the eight orders of magnitude difference in body size from young larvae to adults within a range of environmental temperatures experienced by this species on Georges Bank and other areas in the North Atlantic.


Sign in / Sign up

Export Citation Format

Share Document