Challenges to quantifying glass eel abundance from large and dynamic estuaries

2017 ◽  
Vol 75 (2) ◽  
pp. 727-737 ◽  
Author(s):  
Sarah Walmsley ◽  
Julie Bremner ◽  
Alan Walker ◽  
Jon Barry ◽  
David Maxwell

Abstract European eel Anguilla anguilla recruitment into the rivers of the northeastern Atlantic has declined substantially since the 1980s. Monitoring of recruiting juveniles, or glass eels, is usually undertaken in small estuaries and rivers. Sampling of large-scale estuaries is rare, due to the size of the sampling area and the resources needed to provide adequate sampling levels. Here we describe surveys for glass eels in the UK’s largest estuarine system, the Severn Estuary/Bristol Channel. We sampled across a 20 km-wide stretch of the estuary in 2012 and 2013, using a small-meshed net deployed from a commercial fishing trawler, and the surveys yielded over 2500 glass eels. Eels were more abundant in the surface layer (0–1.4 m depth) than at depth (down to 8.4 m depth), were more abundant close to the south shore than along the north shore or middle of the estuary, and were more abundant in lower salinity water. Numbers were higher in the second year than in the first and eels were more abundant in February than April. The difficulties and logistics of sampling in such a large estuary are discussed, along with the level of resources required to provide robust estimates of glass eel abundance.

2017 ◽  
Vol 75 (2) ◽  
pp. 541-552 ◽  
Author(s):  
Virginie Bornarel ◽  
Patrick Lambert ◽  
Cédric Briand ◽  
Carlos Antunes ◽  
Claude Belpaire ◽  
...  

Abstract European eel (Anguilla anguilla) recruitment has been declining at least since the early 1980s at the scale of its distribution area. Since the population is panmictic, its stock assessment should be carried out on a range-wide basis. However, assessing the overall stock during the continental phase remains difficult given its widespread distribution among heterogeneous and separate river catchments. Hence, it is currently considered by the International Council for the Exploration of the Sea (ICES) more feasible to use glass eel recruitment data to assess the status of the overall population. In this study, we used Glass Eel Recruitment Estimation Model (GEREM) to estimate annual recruitment (i) at the river catchment level, a scale for which data are available, (ii) at an intermediate scale (6 European regions), and (iii) at a larger scale (Europe). This study provides an estimate of the glass eel recruitment trend through a single index, which gathers all recruitment time-series available at the European scale. Results confirmed an overall recruitment decline to dramatically low levels in 2009 (3.5% of the 1960–1979 recruitment average) and highlighted a more pronounced decline in the North Sea area compared to elsewhere in Europe.


2020 ◽  
Vol 12 (3) ◽  
pp. 1124 ◽  
Author(s):  
Billy Nzau Matondo ◽  
Jean-Philippe Benitez ◽  
Arnaud Dierckx ◽  
Xavier Rollin ◽  
Michaël Ovidio

Restocking of the critically endangered European eel Anguilla anguilla is widespread, but it is rarely scientifically evaluated. Methods used to assess its associated performance by estimating the survival rate and implement restocking for maximum recruitment in rivers have not yet been investigated. Based on two glass eel restocking events using a single release site/point and multiple sites per river performed in upland rivers (>340 km from the North Sea), the recruitment success of stocked eels was scientifically evaluated during a 3-year study using multiple capture-mark-recapture methods and mobile telemetry. We compared the observed data with the data estimated from the Telemetry, De Lury and Jolly-Seber stock assessment methods. For recruitment data, Telemetry was very close to Jolly-Seber, an appropriate stock assessment method for open populations. Using the best model of Jolly-Seber, survival probability was higher (>95%) in both restocking practices, but recruitment yields were higher and densities of stocked eels were lower in multiple sites compared to a single site. Our results suggest that Telemetry can help to rapidly assess cryptic juvenile eel stocks with good accuracy under a limited number of capture-mark-recapture sessions. Artificial dispersal of glass eels on several productive habitats/sites per river appears to be the better-suited practice for restocking.


2003 ◽  
Vol 60 (7) ◽  
pp. 787-799 ◽  
Author(s):  
Willem Dekker

For the distribution of the European eel (Anguilla anguilla), only Schmidt (1909) has conducted substantial investigations, yielding a qualitative description (Atlantic and Mediterranean coasts of Europe and Northern Africa). In this article, a meta-analysis of reported fishing yields is presented, showing a major concentration of glass eel yield in the Bay of Biscay (and possibly farther south) and of yellow and (or) silver eel yield in the western Mediterranean. Fisheries target the glass eel stage at highest stock density and shift to the silver eel stage at low density. Because there is no suitable habitat in the Sahara, the southern limit is, contrary to Schmidt's belief, primarily determined by continental conditions. From the centre of the distribution to the north, a long and slow decline in density occurs. The mismatch between northern temperatures and the species' preference, in combination with the very low abundance, indicates that the European eel is best seen as a warm-water species, like most other eel species (Anguilla spp.), showing a considerable northern diaspora.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Alessandro Cresci ◽  
Caroline M. Durif ◽  
Claire B. Paris ◽  
Steven D. Shema ◽  
Anne Berit Skiftesvik ◽  
...  

Abstract The European eel (Anguilla anguilla) hatches in the Sargasso Sea and migrates to European and North African freshwater. As glass eels, they reach estuaries where they become pigmented. Glass eels use a tidal phase-dependent magnetic compass for orientation, but whether their magnetic direction is innate or imprinted during migration is unknown. We tested the hypothesis that glass eels imprint their tidal-dependent magnetic compass direction at the estuaries where they recruit. We collected 222 glass eels from estuaries flowing in different cardinal directions in Austevoll, Norway. We observed the orientation of the glass eels in a magnetic laboratory where the magnetic North was rotated. Glass eels oriented towards the magnetic direction of the prevailing tidal current occurring at their recruitment estuary. Glass eels use their magnetic compass to memorize the magnetic direction of tidal flows. This mechanism could help them to maintain their position in an estuary and to migrate upstream.


2007 ◽  
Vol 64 (7) ◽  
pp. 1414-1422 ◽  
Author(s):  
Janek Simon

Abstract Simon, J. 2007. Age, growth, and condition of European eel (Anguilla anguilla) from six lakes in the River Havel system (Germany). – ICES Journal of Marine Science, 64: 1414–1422. A total of 199 female yellow European eels (Anguilla anguilla), 21.6–66.2 cm long and 3–14 years old, was collected by electro-fishing from six lakes in the River Havel system (Germany) in spring 2001. The condition and the growth rate, estimated by otolith increments, varied between eels within single lakes and between lakes. Fulton's condition factor ranged from 0.10 to 0.24 and the gross energy content varied between 4.3 and 15.3 MJ kg−1. There were no significant differences in mean condition factor (0.16–0.18) or gross energy content (6.5–9.3 MJ kg−1) between lakes. Fastest growth was in Lake Blankensee (mean 5.3 cm year−1), and the slowest in Lake Sacrow (mean 4.0 cm year−1). For all lakes combined, the overall mean annual increment was estimated to be 4.5 cm year−1. The biggest annual increment on the otoliths was generally laid down during the first and second years in fresh water, when the growth rate was 6.1–8.5 cm year−1. Then, in the subsequent 12 years, the annual increment remained almost constant or decreased slightly (with lake-dependent values of between 1.6 and 6.8 cm year−1). In the River Havel system, the time between stocking of the lakes with glass eels and the recapture of eels at 45 cm body length was 7–10 years. The physiologically possible maximum length (L∞ values) of eels lay in the range 50–130 cm. In comparison with previous investigations (between the 1950s and the 1970s), the only difference observed was a trend towards slower growth.


Author(s):  
Peter A. Henderson ◽  
Shaun J. Plenty ◽  
Lyn C. Newton ◽  
David J. Bird

A 30-year study of the estuarine population of yellow eel, Anguilla anguilla, abundance in Bridgwater Bay, Somerset, UK, shows that the population number has collapsed. Since 1980, the decline has averaged 15% per year. The abundance of eel in 2009 is estimated at only 1% of that in 1980. This is one of the greatest systematically quantified crashes of a fish population ever reported. Collections of eels impinged on cooling water filter screens were made monthly at Hinkley Point power station between 1980 and 2010 and from Oldbury power station between 1996 and 1998. Eels are always present in the Severn Estuary, although there are large seasonal variations in abundance. At Oldbury, in the upper estuary, eels are least abundant in January. In contrast, in the outer estuary in Bridgwater Bay, eels are most abundant between November and March. The size-distribution of yellow eels ranged from <200 to >700 mm indicating an age-range since the glass eel stage of 2 to >25 years. The mean size-range has not changed since the 1980s indicating that the population collapse is not caused by a sudden recruitment failure. It is suggested that there has been a continual long-term failure of recruitment to compensate for losses. The reason for this is unidentified, but is unlikely to be changes in the North Atlantic Oscillation or other natural environmental variability. A major effort to improve eel survival to adulthood is required if this species is not to gently fade to extinction. This would likely involve a cessation of elver fishing, a reduction in the volume of estuarine water extracted for power station cooling and other purposes during which eels are entrained and killed, and the removal of obstructions which increase mortality during migration.


2017 ◽  
Vol 74 (4) ◽  
pp. 445-451 ◽  
Author(s):  
T. Podgorniak ◽  
M. Angelini ◽  
E. De Oliveira ◽  
F. Daverat ◽  
F. Pierron

Fishways are built on obstacles to restore the connectivity between aquatic habitats. Our study investigated how species-specific fishways interact with interindividual trait differences among fish. We compared several groups of glass eels (Anguilla anguilla) climbing two types of fishways with those remaining below the water impoundments. We analyzed relative body condition factor, body length, mass, and in vitro activities and gene transcription levels of several enzymes involved in the energy metabolism (LDH, CS, CCO, PK). Differences among groups indicated that glass eel fish ladders can be size-specific, according to the type of substrate covering the surface of apparatus. Moreover, we found that climbing specific glass eel ladders can require higher endurance-related metabolic traits, triggering increased aerobic capacities. Increased aerobic efforts together with potential size selectivity of fishways should be taken into account when designing such devices and choosing appropriate location on eel migratory pathways.


Sign in / Sign up

Export Citation Format

Share Document