Genetically determined risk of keratinocyte carcinoma and risk of other cancers

Author(s):  
Jean Claude Dusingize ◽  
Catherine M Olsen ◽  
Jiyuan An ◽  
Nirmala Pandeya ◽  
Upekha E Liyanage ◽  
...  

Abstract Background Epidemiological studies have consistently documented an increased risk of developing primary non-cutaneous malignancies among people with a history of keratinocyte carcinoma (KC). However, the mechanisms underlying this association remain unclear. We conducted two separate analyses to test whether genetically predicted KC is related to the risk of developing cancers at other sites. Methods In the first approach (one-sample), we calculated the polygenic risk scores (PRS) for KC using individual-level data in the UK Biobank (n = 394 306) and QSkin cohort (n = 16 896). The association between the KC PRS and each cancer site was assessed using logistic regression. In the secondary (two-sample) approach, we used genome-wide association study (GWAS) summary statistics identified from the most recent GWAS meta-analysis of KC and obtained GWAS data for each cancer site from the UK-Biobank participants only. We used inverse-variance-weighted methods to estimate risks across all genetic variants. Results Using the one-sample approach, we found that the risks of cancer at other sites increased monotonically with KC PRS quartiles, with an odds ratio (OR) of 1.16, 95% confidence interval (CI): 1.13–1.19 for those in KC PRS quartile 4 compared with those in quartile 1. In the two-sample approach, the pooled risk of developing other cancers was statistically significantly elevated, with an OR of 1.05, 95% CI: 1.03–1.07 per doubling in the odds of KC. We observed similar trends of increasing cancer risk with increasing KC PRS in the QSkin cohort. Conclusion Two different genetic approaches provide compelling evidence that an instrumental variable for KC constructed from genetic variants predicts the risk of cancers at other sites.

2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Jianchang Hu ◽  
Cai Li ◽  
Shiying Wang ◽  
Ting Li ◽  
Heping Zhang

Abstract Background The severity of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly heterogeneous. Studies have reported that males and some ethnic groups are at increased risk of death from COVID-19, which implies that individual risk of death might be influenced by host genetic factors. Methods In this project, we consider the mortality as the trait of interest and perform a genome-wide association study (GWAS) of data for 1778 infected cases (445 deaths, 25.03%) distributed by the UK Biobank. Traditional GWAS fails to identify any genome-wide significant genetic variants from this dataset. To enhance the power of GWAS and account for possible multi-loci interactions, we adopt the concept of super variant for the detection of genetic factors. A discovery-validation procedure is used for verifying the potential associations. Results We find 8 super variants that are consistently identified across multiple replications as susceptibility loci for COVID-19 mortality. The identified risk factors on chromosomes 2, 6, 7, 8, 10, 16, and 17 contain genetic variants and genes related to cilia dysfunctions (DNAH7 and CLUAP1), cardiovascular diseases (DES and SPEG), thromboembolic disease (STXBP5), mitochondrial dysfunctions (TOMM7), and innate immune system (WSB1). It is noteworthy that DNAH7 has been reported recently as the most downregulated gene after infecting human bronchial epithelial cells with SARS-CoV-2. Conclusions Eight genetic variants are identified to significantly increase the risk of COVID-19 mortality among the patients with white British ancestry. These findings may provide timely clues and potential directions for better understanding the molecular pathogenesis of COVID-19 and the genetic basis of heterogeneous susceptibility, with potential impact on new therapeutic options.


Author(s):  
Mengyao Yu ◽  
Sergiy Kyryachenko ◽  
Stephanie Debette ◽  
Philippe Amouyel ◽  
Jean-Jacques Schott ◽  
...  

Background: Mitral valve prolapse (MVP) is a common cardiac valve disease, which affects 1 in 40 in the general population. Previous genome-wide association study have identified 6 risk loci for MVP. But these loci explained only partially the genetic risk for MVP. We aim to identify additional risk loci for MVP by adding data set from the UK Biobank. Methods: We reanalyzed 1007/479 cases from the MVP-France study, 1469/862 controls from the MVP-Nantes study for reimputation genotypes using HRC and TOPMed panels. We also incorporated 434 MVP cases and 4527 controls from the UK Biobank for discovery analyses. Genetic association was conducted using SNPTEST and meta-analyses using METAL. We used FUMA for post-genome-wide association study annotations and MAGMA for gene-based and gene-set analyses. Results: We found TOPMed imputation to perform better in terms of accuracy in the lower ranges of minor allele frequency below 0.1. Our updated meta-analysis included UK Biobank study for ≈8 million common single-nucleotide polymorphisms (minor allele frequency >0.01) and replicated the association on Chr2 as the top association signal near TNS1 . We identified an additional risk locus on Chr1 ( SYT2 ) and 2 suggestive risk loci on chr8 ( MSRA ) and chr19 ( FBXO46 ), all driven by common variants. Gene-based association using MAGMA revealed 6 risk genes for MVP with pronounced expression levels in cardiovascular tissues, especially the heart and globally part of enriched GO terms related to cardiac development. Conclusions: We report an updated meta-analysis genome-wide association study for MVP using dense imputation coverage and an improved case-control sample. We describe several loci and genes with MVP spanning biological mechanisms highly relevant to MVP, especially during valve and heart development.


Circulation ◽  
2020 ◽  
Vol 141 (Suppl_1) ◽  
Author(s):  
Yanjun Guo ◽  
Wonil Chung ◽  
Zhilei Shan ◽  
Liming Liang

Background: Patients with RA have a 2-10 folds increased risk of cardiovascular diseases (CVD) and CVD accounts for almost 50% of the excess mortality in patients with RA when compared with general population, but the mechanisms underlying such associations are largely unknown. Methods: We examined the genetic correlation, causality, and shared genetic variants between RA (Ncase=6,756, Ncontrol=452,476) and CVD (Ncase=44,246, Ncontrol=414,986) using LD Score regression (LDSC), generalized summary-data-based Mendelian Randomization (GSMR), and cross-trait meta-analysis in the UK Biobank Data. Results: In the present study, RA was significantly genetically correlated with MI, angina, CHD, and CVD after correcting for multiple testing (Rg ranges from 0.40 to 0.43, P<0.05/5). Interestingly, when stratified by frequent usage of aspirin and paracetamol, we observed increased genetic correlation between RA and CVD for participants without aspirin usage ( Rg increased to 0.54 [95%CI: 0.54, 0.78] for angina; P value=6.69х10 -6 ), and for participants with usage of paracetamol ( Rg increased to 0.75 [95%CI: 0.20, 1.29] for MI; P value=8.90х10 -3 ). Cross-trait meta-analysis identified 9 independent loci that were shared between RA and at least one of the genetically correlated CVD traits including PTPN22 at chr1p13.2 , BCL2L11 at chr2q13 , and CCR3 at chr3p21.31 ( P single trait <1х10 -3 and P meta <5х10 -8 ) highlighting potential shared etiology between them which include accelerating atherosclerosis and upregulating oxidative stress and vascular permeability. Finally, Mendelian randomization analyses observed inconsistent instrumental effects and were unable to conclude the causality and directionality between RA and CVD. Conclusion: Our results supported positive genetic correlation between RA and multiple cardiovascular traits, and frequent usage of aspirin and paracetamol may modify their associations, but instrumental analyses were unable to conclude the causality and directionality between them.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009525
Author(s):  
Mark Gormley ◽  
James Yarmolinsky ◽  
Tom Dudding ◽  
Kimberley Burrows ◽  
Richard M. Martin ◽  
...  

Head and neck squamous cell carcinoma (HNSCC), which includes cancers of the oral cavity and oropharynx, is a cause of substantial global morbidity and mortality. Strategies to reduce disease burden include discovery of novel therapies and repurposing of existing drugs. Statins are commonly prescribed for lowering circulating cholesterol by inhibiting HMG-CoA reductase (HMGCR). Results from some observational studies suggest that statin use may reduce HNSCC risk. We appraised the relationship of genetically-proxied cholesterol-lowering drug targets and other circulating lipid traits with oral (OC) and oropharyngeal (OPC) cancer risk using two-sample Mendelian randomization (MR). For the primary analysis, germline genetic variants in HMGCR, NPC1L1, CETP, PCSK9 and LDLR were used to proxy the effect of low-density lipoprotein cholesterol (LDL-C) lowering therapies. In secondary analyses, variants were used to proxy circulating levels of other lipid traits in a genome-wide association study (GWAS) meta-analysis of 188,578 individuals. Both primary and secondary analyses aimed to estimate the downstream causal effect of cholesterol lowering therapies on OC and OPC risk. The second sample for MR was taken from a GWAS of 6,034 OC and OPC cases and 6,585 controls (GAME-ON). Analyses were replicated in UK Biobank, using 839 OC and OPC cases and 372,016 controls and the results of the GAME-ON and UK Biobank analyses combined in a fixed-effects meta-analysis. We found limited evidence of a causal effect of genetically-proxied LDL-C lowering using HMGCR, NPC1L1, CETP or other circulating lipid traits on either OC or OPC risk. Genetically-proxied PCSK9 inhibition equivalent to a 1 mmol/L (38.7 mg/dL) reduction in LDL-C was associated with an increased risk of OC and OPC combined (OR 1.8 95%CI 1.2, 2.8, p = 9.31 x10-05), with good concordance between GAME-ON and UK Biobank (I2 = 22%). Effects for PCSK9 appeared stronger in relation to OPC (OR 2.6 95%CI 1.4, 4.9) than OC (OR 1.4 95%CI 0.8, 2.4). LDLR variants, resulting in genetically-proxied reduction in LDL-C equivalent to a 1 mmol/L (38.7 mg/dL), reduced the risk of OC and OPC combined (OR 0.7, 95%CI 0.5, 1.0, p = 0.006). A series of pleiotropy-robust and outlier detection methods showed that pleiotropy did not bias our findings. We found limited evidence for a role of cholesterol-lowering in OC and OPC risk, suggesting previous observational results may have been confounded. There was some evidence that genetically-proxied inhibition of PCSK9 increased risk, while lipid-lowering variants in LDLR, reduced risk of combined OC and OPC. This result suggests that the mechanisms of action of PCSK9 on OC and OPC risk may be independent of its cholesterol lowering effects; however, this was not supported uniformly across all sensitivity analyses and further replication of this finding is required.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Julian N Acosta ◽  
Cameron Both ◽  
Natalia Szejko ◽  
Stacy Brown ◽  
Nils H Petersen ◽  
...  

Introduction: Blood pressure (BP) is a highly heritable trait with numerous related genetic risk variants identified. While prior studies showed that polygenic susceptibility to hypertension (PSH) is associated with elevated BP, uncontrolled hypertension (UHTN), resistant hypertension (RHTN), and risk of stroke, its role after a cerebrovascular event remains unknown. We tested the hypothesis that PSH leads to higher BP and increased risk of UHTN and RHTN in stroke survivors. Methods: We conducted a nested study within the UK Biobank, including individuals of European ancestry with a prevalent ischemic or hemorrhagic stroke. To model PSH, we created polygenic risk scores (PRS) for systolic, diastolic, and pulse BP using 732 previously discovered loci. We divided the PRS into quintiles and used linear and logistic regression to test whether higher PSH led to higher observed BP as well as increased risk of UHTN (SBP >140 mmHg or DBP >90 mmHg) and RHTN (UHTN despite being on >=3 antihypertensive drugs) in stroke survivors. Results: Of the 502,536 participants enrolled in the UK Biobank, 5,815 (1.2%) with a prevalent stroke at enrollment were included. We found the following results across quintiles 1 through 5 of the systolic BP-based PRS: mean systolic BP 138.4, 140.6, 141.8, 142.9 and 145.8 mmHg (unadjusted p<0.0001, Figure’s left panel); risk of UHTN 46%, 51%, 52%, 56% and 59% (unadjusted p<0.0001, Figure’s center panel); and risk of RHTN 1.9%, 3.8%, 4.7%, 5.8% and 6.7% (unadjusted p<0.0001, Figure’s right panel). We obtained similar results when both evaluating diastolic and pulse BP-based PRSs and using adjusted multivariable models (all p<0.0001). Conclusion: PSH is associated with observed BP and the risk of UHTN and RHTN in stroke survivors. Follow up research should evaluate whether precision medicine strategies based on BP-related genetic information can help identify patients that could benefit from aggressive diagnostic and/or therapeutic interventions.


2020 ◽  
Vol 29 (8) ◽  
pp. 1396-1404 ◽  
Author(s):  
Weihua Meng ◽  
Brian W Chan ◽  
Cameron Harris ◽  
Maxim B Freidin ◽  
Harry L Hebert ◽  
...  

Abstract Background Common types of musculoskeletal conditions include pain in the neck and shoulder areas. This study seeks to identify the genetic variants associated with neck or shoulder pain based on a genome-wide association approach using 203 309 subjects from the UK Biobank cohort and look for replication evidence from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and TwinsUK. Methods A genome-wide association study was performed adjusting for age, sex, BMI and nine population principal components. Significant and independent genetic variants were then sent to GS:SFHS and TwinsUK for replication. Results We identified three genetic loci that were associated with neck or shoulder pain in the UK Biobank samples. The most significant locus was in an intergenic region in chromosome 17, rs12453010, having P = 1.66 × 10−11. The second most significant locus was located in the FOXP2 gene in chromosome 7 with P = 2.38 × 10−10 for rs34291892. The third locus was located in the LINC01572 gene in chromosome 16 with P = 4.50 × 10−8 for rs62053992. In the replication stage, among four significant and independent genetic variants, rs2049604 in the FOXP2 gene and rs62053992 in the LINC01572 gene were weakly replicated in GS:SFHS (P = 0.0240 and P = 0.0202, respectively). Conclusions We have identified three loci associated with neck or shoulder pain in the UK Biobank cohort, two of which were weakly supported in a replication cohort. Further evidence is needed to confirm their roles in neck or shoulder pain.


2021 ◽  
Author(s):  
Yosuke Tanigawa ◽  
Junyang Qian ◽  
Guhan Ram Venkataraman ◽  
Johanne M. Justesen ◽  
Ruilin Li ◽  
...  

We present a systematic assessment of polygenic risk score (PRS) prediction across more than 1,600 traits using genetic and phenotype data in the UK Biobank. We report 428 sparse PRS models with significant (p < 2.5e-5) incremental predictive performance when compared against the covariate-only model that considers age, sex, and the genotype principal components. We report a significant correlation between the number of genetic variants selected in the sparse PRS model and the incremental predictive performance in quantitative traits (Spearman's ρ = 0.54, p = 1.4e-15), but not in binary traits (ρ = 0.059, p = 0.35). The sparse PRS model trained on European individuals showed limited transferability when evaluated on individuals from non-European individuals in the UK Biobank. We provide the PRS model weights on the Global Biobank Engine (https://biobankengine.stanford.edu/prs).


2020 ◽  
Author(s):  
Kylie P Glanville ◽  
Jonathan R I Coleman ◽  
Paul F O’Reilly ◽  
James Galloway ◽  
Cathryn M Lewis

AbstractBackgroundEpidemiological studies have shown increased comorbidity between depression and autoimmune diseases. The mechanisms driving the comorbidity are poorly understood, and a highly powered investigation is needed to understand the relative importance of shared genetic influences. We investigated the evidence for pleiotropy from shared genetic risk alleles between these traits in the UK Biobank (UKB).MethodsWe defined autoimmune and depression cases using information from hospital episode statistics, self-reported conditions and medications, and mental health questionnaires. Pairwise comparisons of depression prevalence between autoimmune cases and controls, and vice-versa, were performed. Cross-trait polygenic risk score (PRS) analyses were performed to test for pleiotropy, i.e. testing whether PRS for depression could predict autoimmune disease status, and vice-versa.ResultsWe identified 28k cases of autoimmune diseases (pooling across 14 traits), and 65k cases of depression. The prevalence of depression was significantly higher in autoimmune cases compared to controls, and vice-versa. PRS for myasthenia gravis and psoriasis were significantly associated with depression case-status (p < 5.2×10−5, R2 <= 0.04%). PRS for depression were significantly associated with case-status for coeliac disease, inflammatory bowel disease, psoriasis, psoriatic arthritis, rheumatoid arthritis and type 1 diabetes (p < 5.8×10−5, R2 range 0.06% to 0.27%).ConclusionsConsistent with the literature, depression was more common in individuals with autoimmune diseases compared to controls, and vice-versa, in the UKB. PRS showed some evidence for involvement of shared genetic factors, but the modest R2 values suggest that shared genetic architecture accounts for only a small proportion of the increased risk across traits.


2021 ◽  
Vol 3 ◽  
Author(s):  
Kirstine Kloeve-Mogensen ◽  
Palle Duun Rohde ◽  
Simone Twisttmann ◽  
Marianne Nygaard ◽  
Kristina Magaard Koldby ◽  
...  

Endometriosis is a major health care challenge because many young women with endometriosis go undetected for an extended period, which may lead to pain sensitization. Clinical tools to better identify candidates for laparoscopy-guided diagnosis are urgently needed. Since endometriosis has a strong genetic component, there is a growing interest in using genetics as part of the clinical risk assessment. The aim of this work was to investigate the discriminative ability of a polygenic risk score (PRS) for endometriosis using three different cohorts: surgically confirmed cases from the Western Danish endometriosis referral Center (249 cases, 348 controls), cases identified from the Danish Twin Registry (DTR) based on ICD-10 codes from the National Patient Registry (140 cases, 316 controls), and replication analysis in the UK Biobank (2,967 cases, 256,222 controls). Patients with adenomyosis from the DTR (25 cases) and from the UK Biobank (1,883 cases) were included for comparison. The PRS was derived from 14 genetic variants identified in a published genome-wide association study with more than 17,000 cases. The PRS was associated with endometriosis in surgically confirmed cases [odds ratio (OR) = 1.59, p = 2.57× 10−7] and in cases from the DTR biobank (OR = 1.50, p = 0.0001). Combining the two Danish cohorts, each standard deviation increase in PRS was associated with endometriosis (OR = 1.57, p = 2.5× 10−11), as well as the major subtypes of endometriosis; ovarian (OR = 1.72, p = 6.7× 10−5), infiltrating (OR = 1.66, p = 2.7× 10−9), and peritoneal (OR = 1.51, p = 2.6 × 10−3). These findings were replicated in the UK Biobank with a much larger sample size (OR = 1.28, p &lt; 2.2× 10−16). The PRS was not associated with adenomyosis, suggesting that adenomyosis is not driven by the same genetic risk variants as endometriosis. Our results suggest that a PRS captures an increased risk of all types of endometriosis rather than an increased risk for endometriosis in specific locations. Although the discriminative accuracy is not yet sufficient as a stand-alone clinical utility, our data demonstrate that genetics risk variants in form of a simple PRS may add significant new discriminatory value. We suggest that an endometriosis PRS in combination with classical clinical risk factors and symptoms could be an important step in developing an urgently needed endometriosis risk stratification tool.


2019 ◽  
Author(s):  
Weihua Meng ◽  
Mark J Adams ◽  
Colin NA Palmer ◽  
Jingchunzi Shi ◽  
Adam Auton ◽  
...  

SUMMARYObjectiveKnee pain is one of the most common musculoskeletal complaints that brings people to medical attention. We sought to identify the genetic variants associated with knee pain in 171,516 subjects from the UK Biobank cohort and replicate them using cohorts from 23andMe, the Osteoarthritis Initiative (OAI), and the Johnston County Osteoarthritis Study (JoCo).MethodsWe performed a genome-wide association study of knee pain in the UK Biobank, where knee pain was ascertained through self-report and defined as “knee pain in the last month interfering with usual activities”. A total of 22,204 cases and 149,312 controls were included in the discovery analysis. We tested our top and independent SNPs (P < 5 × 10−8) for replication in 23andMe, OAI, and JoCo, then performed a joint meta-analysis between discovery and replication cohorts using GWAMA. We calculated the narrow-sense heritability of knee pain using Genome-wide Complex Trait Analysis (GCTA).ResultsWe identified 2 loci that reached genome-wide significance, rs143384 located in the GDF5 (P = 1.32 × 10−12), a gene previously implicated in osteoarthritis, and rs2808772, located near COL27A1 (P = 1.49 × 10−8). These findings were subsequently replicated in independent cohorts and increased in significance in the joint meta-analysis (rs143384: P = 4.64 × 10−18; rs2808772: P −11 = 2.56 × 10−1’). The narrow sense heritability of knee pain was 0.08.ConclusionIn this first reported genome-wide association meta-analysis of knee pain, we identified and replicated two loci in or near GDF5 and COL27A1 that are associated with knee pain.


Sign in / Sign up

Export Citation Format

Share Document