scholarly journals Boolean Product Polynomials, Schur Positivity, and Chern Plethysm

Author(s):  
Sara C Billey ◽  
Brendon Rhoades ◽  
Vasu Tewari

Abstract Let $k \leq n$ be positive integers, and let $X_n = (x_1, \dots , x_n)$ be a list of $n$ variables. The Boolean product polynomial  $B_{n,k}(X_n)$ is the product of the linear forms $\sum _{i \in S} x_i$, where $S$ ranges over all $k$-element subsets of $\{1, 2, \dots , n\}$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $B_{n,k}(X_n)$ for certain $k$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $B_{n,n-1}(X_n)$ to a bigraded action of the symmetric group ${\mathfrak{S}}_n$ on a divergence free quotient of superspace.

1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


2005 ◽  
Vol 01 (04) ◽  
pp. 563-581 ◽  
Author(s):  
A. KNOPFMACHER ◽  
M. E. MAYS

The general field of additive number theory considers questions concerning representations of a given positive integer n as a sum of other integers. In particular, partitions treat the sums as unordered combinatorial objects, and compositions treat the sums as ordered. Sometimes the sums are restricted, so that, for example, the summands are distinct, or relatively prime, or all congruent to ±1 modulo 5. In this paper we review work on analogous problems concerning representations of n as a product of positive integers. We survey techniques for enumerating product representations both in the unrestricted case and in the case when the factors are required to be distinct, and both when the product representations are considered as ordered objects and when they are unordered. We offer some new identities and observations for these and related counting functions and derive some new recursive algorithms to generate lists of factorizations with restrictions of various types.


2008 ◽  
Vol 60 (3) ◽  
pp. 491-519 ◽  
Author(s):  
Yann Bugeaud ◽  
Maurice Mignotte ◽  
Samir Siksek

AbstractWe solve several multi-parameter families of binomial Thue equations of arbitrary degree; for example, we solve the equation5uxn − 2r3s yn = ±1,in non-zero integers x, y and positive integers u, r, s and n ≥ 3. Our approach uses several Frey curves simultaneously, Galois representations and level-lowering, new lower bounds for linear forms in 3 logarithms due to Mignotte and a famous theorem of Bennett on binomial Thue equations.


Author(s):  
Soumen Maity ◽  
Charles J. Colbourn

Covering arrays are combinatorial objects that have been successfully applied in design of test suites for testing systems such as software, hardware, and networks where failures can be caused by the interaction between their parameters. Let [Formula: see text] and [Formula: see text] be positive integers with [Formula: see text]. Two vectors [Formula: see text] and [Formula: see text] are qualitatively independent if for any ordered pair [Formula: see text], there exists an index [Formula: see text] such that [Formula: see text]. Let [Formula: see text] be a graph with [Formula: see text] vertices [Formula: see text] with respective vertex weights [Formula: see text]. A mixed covering array on[Formula: see text] , denoted by [Formula: see text], is a [Formula: see text] array such that row [Formula: see text] corresponds to vertex [Formula: see text], entries in row [Formula: see text] are from [Formula: see text]; and if [Formula: see text] is an edge in [Formula: see text], then the rows [Formula: see text] are qualitatively independent. The parameter [Formula: see text] is the size of the array. Given a weighted graph [Formula: see text], a mixed covering array on [Formula: see text] with minimum size is optimal. In this paper, we introduce some basic graph operations to provide constructions for optimal mixed covering arrays on the family of graphs with treewidth at most three.


2001 ◽  
Vol 53 (5) ◽  
pp. 897-922 ◽  
Author(s):  
Michael A. Bennett

AbstractIn this paper, we establish a number of theorems on the classic Diophantine equation of S. S. Pillai, ax – by = c, where a, b and c are given nonzero integers with a, b ≥ 2. In particular, we obtain the sharp result that there are at most two solutions in positive integers x and y and deduce a variety of explicit conditions under which there exists at most a single such solution. These improve or generalize prior work of Le, Leveque, Pillai, Scott and Terai. The main tools used include lower bounds for linear forms in the logarithms of (two) algebraic numbers and various elementary arguments.


10.37236/731 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Roger E. Behrend

The combinatorics of certain tuples of osculating lattice paths is studied, and a relationship with oscillating tableaux is obtained. The paths being considered have fixed start and end points on respectively the lower and right boundaries of a rectangle in the square lattice, each path can take only unit steps rightwards or upwards, and two different paths within a tuple are permitted to share lattice points, but not to cross or share lattice edges. Such path tuples correspond to configurations of the six-vertex model of statistical mechanics with appropriate boundary conditions, and they include cases which correspond to alternating sign matrices. Of primary interest here are path tuples with a fixed number $l$ of vacancies and osculations, where vacancies or osculations are points of the rectangle through which respectively no or two paths pass. It is shown that there exist natural bijections which map each such path tuple $P$ to a pair $(t,\eta)$, where $\eta$ is an oscillating tableau of length $l$ (i.e., a sequence of $l+1$ partitions, starting with the empty partition, in which the Young diagrams of successive partitions differ by a single square), and $t$ is a certain, compatible sequence of $l$ weakly increasing positive integers. Furthermore, each vacancy or osculation of $P$ corresponds to a partition in $\eta$ whose Young diagram is obtained from that of its predecessor by respectively the addition or deletion of a square. These bijections lead to enumeration formulae for tuples of osculating paths involving sums over oscillating tableaux.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Suho Oh ◽  
David Speyer

International audience Plabic graphs are combinatorial objects used to study the totally nonnegative Grassmannian. Faces of plabic graphs are labeled by k-element sets of positive integers, and a collection of such k-element sets are the face labels of a plabic graph if that collection forms a maximal weakly separated collection. There are moves that one can apply to plabic graphs, and thus to maximal weakly separated collections, analogous to mutations of seeds in cluster algebras. In this short note, we show if two maximal weakly separated collections can be mutated from one to another, then one can do so while freezing the face labels they have in common. In particular, this provides a new, and we think simpler, proof of Postnikov's result that any two reduced plabic graphs with the same decorated permutations can be mutated to each other.


2015 ◽  
Vol 158 (2) ◽  
pp. 305-329 ◽  
Author(s):  
MICHAEL A. BENNETT ◽  
SANDER R. DAHMEN ◽  
MAURICE MIGNOTTE ◽  
SAMIR SIKSEK

AbstractLet {uk} be a Lucas sequence. A standard technique for determining the perfect powers in the sequence {uk} combines bounds coming from linear forms in logarithms with local information obtained via Frey curves and modularity. The key to this approach is the fact that the equation uk = xn can be translated into a ternary equation of the form ay2 = bx2n + c (with a, b, c ∈ ℤ) for which Frey curves are available. In this paper we consider shifted powers in Lucas sequences, and consequently equations of the form uk = xn+c which do not typically correspond to ternary equations with rational unknowns. However, they do, under certain hypotheses, lead to ternary equations with unknowns in totally real fields, allowing us to employ Frey curves over those fields instead of Frey curves defined over ℚ. We illustrate this approach by showing that the quaternary Diophantine equation x2n±6xn + 1 = 8y2 has no solutions in positive integers x, y, n with x, n > 1.


10.37236/1330 ◽  
1997 ◽  
Vol 4 (2) ◽  
Author(s):  
James Propp

This survey article describes a method for choosing uniformly at random from any finite set whose objects can be viewed as constituting a distributive lattice. The method is based on ideas of the author and David Wilson for using "coupling from the past" to remove initialization bias from Monte Carlo randomization. The article describes several applications to specific kinds of combinatorial objects such as tilings, constrained lattice paths, an alternating sign matrices.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jessica Striker

International audience Alternating sign matrices (ASMs) are square matrices with entries 0, 1, or -1 whose rows and columns sum to 1 and whose nonzero entries alternate in sign. We put ASMs into a larger context by studying the order ideals of subposets of a certain poset, proving that they are in bijection with a variety of interesting combinatorial objects, including ASMs, totally symmetric self―complementary plane partitions (TSSCPPs), Catalan objects, tournaments, semistandard Young tableaux, and totally symmetric plane partitions. We use this perspective to prove an expansion of the tournament generating function as a sum over TSSCPPs which is analogous to a known formula involving ASMs. Les matrices à signe alternant (ASMs) sont des matrices carrées dont les coefficients sont 0,1 ou -1, telles que dans chaque ligne et chaque colonne la somme des entrées vaut 1 et les entrées non nulles ont des signes qui alternent. Nous incluons les ASMs dans un cadre plus vaste, en étudiant les idéaux des sous-posets d'un certain poset, dont nous prouvons qu'ils sont en bijection avec de nombreux objets combinatoires intéressants, tels que les ASMs, les partitions planes totalement symétriques autocomplémentaires (TSSCPPs), des objets comptés par les nombres de Catalan, les tournois, les tableaux semistandards, ou les partitions planes totalement symétriques. Nous utilisons ce point de vue pour démontrer un développement de la série génératrice des tournois en une somme portant sur les TSSCPPs, analogue à une formule déjà connue faisant appara\^ıtre les ASMs.


Sign in / Sign up

Export Citation Format

Share Document