scholarly journals Modeling chemical effects on breast cancer: the importance of the microenvironment in vitro

2020 ◽  
Vol 12 (2) ◽  
pp. 21-33 ◽  
Author(s):  
Molly M Morgan ◽  
Linda A Schuler ◽  
Jordan C Ciciliano ◽  
Brian P Johnson ◽  
Elaine T Alarid ◽  
...  

Abstract Accumulating evidence suggests that our ability to predict chemical effects on breast cancer is limited by a lack of physiologically relevant in vitro models; the typical in vitro breast cancer model consists of the cancer cell and excludes the mammary microenvironment. As the effects of the microenvironment on cancer cell behavior becomes more understood, researchers have called for the integration of the microenvironment into in vitro chemical testing systems. However, given the complexity of the microenvironment and the variety of platforms to choose from, identifying the essential parameters to include in a chemical testing platform is challenging. This review discusses the need for more complex in vitro breast cancer models and outlines different approaches used to model breast cancer in vitro. We provide examples of the microenvironment modulating breast cancer cell responses to chemicals and discuss strategies to help pinpoint what components should be included in a model.

Toxicology ◽  
2011 ◽  
Vol 289 (2-3) ◽  
pp. 67-73 ◽  
Author(s):  
M.B.M. van Duursen ◽  
S.M. Nijmeijer ◽  
E.S. de Morree ◽  
P. Chr. de Jong ◽  
M. van den Berg

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 13510-13510
Author(s):  
S. E. Hahn ◽  
L. A. da Cruz ◽  
D. Sayegh ◽  
A. Ferry ◽  
K. O’Reilly ◽  
...  

13510 Background: CD44 (an adhesion molecule and stem cell antigen), CD59 (a complement-inhibitory molecule), MCSP (an adhesion and cell-cell interactions), and Trop-2 (EpCam a related signaling molecule) represent a group of biologically-significant cancer proteins acting through distinct mechanisms. We have described Abs with in vitro and in vivo cancer suppressive activity to this group of targets. However, their effectiveness depends on the phenotype of malignant cells; cell response should correlate with expression of its Ag, and tumor cells represent a heterogeneous group of non-synchronous cells. The present study describes the efficacy of those antibodies in breast cancer models and the prevalence of their antigen targets in a survey of human breast cancer tissues. Methods: In vivo activity of antibodies ARH460–16–2 (anti-CD44), AR36A36.11.1 (anti-CD59), AR11BD-2E11–2 (anti-MCSP), and AR47A6.4.2 (anti-Trop-2) in estrogen-dependent and hormone sensitive xenograft models of human breast cancer was examined. In addition, distribution of the antigens in breast cancer was determined by immunohistochemistry using tumor tissue arrays of breast cancer sections from distinct patients. Results: Treatment of an established breast cancer model with ARH460–16–2 resulted in 51% median tumor xenograft suppression (p<0.05), as well as increased survival in an MDA-MB-231 (breast cancer) grafted model. 63% of human breast cancer sections expressed the CD44 antigen. Treatment with anti-CD59 antibody AR36A36.11.1 resulted in 68% xenograft tumor suppression (p<0.005). AR47A6.4.2 anti-Trop-2 antibody bound to 100% of human breast cancer sections tested, and showed efficacy in the estrogen- dependent MCF-7 breast cancer model. Anti-MCSP antibody AR11BD-2E11–2 demonstrated 80% tumor growth inhibition (p<0.001), increased survival in an estrogen-dependent model of breast cancer, and was found to stain 62% of breast cancer tissues examined. Conclusions: The heterogeneity of breast cancer cell phenotypes in in vitro and in vivo studies and variable composite cellular antigen targets is the basis for the therapeutic use of multiple antibodies, each with independent mechanisms of action, and offers a rationale for combined antibody therapy in selected patients. [Table: see text]


2014 ◽  
Vol 349 (2) ◽  
pp. 120-127 ◽  
Author(s):  
Lucia Borriello ◽  
Matthieu Montès ◽  
Yves Lepelletier ◽  
Bertrand Leforban ◽  
Wang-Qing Liu ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3295
Author(s):  
Federica Foglietta ◽  
Loredana Serpe ◽  
Roberto Canaparo

Stimuli-responsive drug-delivery systems (DDSs) have emerged as a potential tool for applications in healthcare, mainly in the treatment of cancer where versatile nanocarriers are co-triggered by endogenous and exogenous stimuli. Two-dimensional (2D) cell cultures are the most important in vitro model used to evaluate the anticancer activity of these stimuli-responsive DDSs due to their easy manipulation and versatility. However, some limitations suggest that these in vitro models poorly predict the outcome of in vivo studies. One of the main drawbacks of 2D cell cultures is their inadequate representation of the 3D environment’s physiological complexity, which sees cells interact with each other and the extracellular matrix (ECM) according to their specific cellular organization. In this regard, 3D cancer models are a promising approach that can overcome the main shortcomings of 2D cancer cell cultures, as these in vitro models possess many peculiarities by which they mimic in vivo tumors, including physiologically relevant cell–cell and cell–ECM interactions. This is, in our opinion, even more relevant when a stimuli-responsive DDS is being investigated. In this review, we therefore report and discuss endogenous and exogenous stimuli-responsive DDSs whose effectiveness has been tested using 3D cancer cell cultures.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4571
Author(s):  
Gloria M. Calaf ◽  
Leodan A. Crispin ◽  
Debasish Roy ◽  
Francisco Aguayo ◽  
Juan P. Muñoz ◽  
...  

This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.


2016 ◽  
Vol 5 (23) ◽  
pp. 3074-3084 ◽  
Author(s):  
Filomena Gioiella ◽  
Francesco Urciuolo ◽  
Giorgia Imparato ◽  
Virginia Brancato ◽  
Paolo A. Netti

2020 ◽  
Vol 21 (19) ◽  
pp. 7311 ◽  
Author(s):  
Catharina Melzer ◽  
Juliane von der Ohe ◽  
Ralf Hass

Similar to growth-limited human primary cultures of mesenchymal stroma/stem-like cells (MSC), the continuously proliferating human MSC544 cell line produced extracellular vesicles as characterized by expression of the tetraspanin molecules CD9, CD63, and CD81. Release of these particles was predominantly detectable during continuous cell growth of MSC544 in contrast to confluency-mediated transient growth arrest. For therapeutic use, these particles were isolated from proliferating MSC544 after taxol treatment and applied to different cancer cell cultures. A pronounced cytotoxicity of lung, ovarian, and breast cancer cells was observed primarily with taxol-loaded exosomes, similar to the effects displayed by application of taxol substance. While these findings suggested pronounced cancer cell targeting of MSC544 exosomes, a tumor therapeutic approach was performed using a mouse in vivo breast cancer model. Thus, intravenous injection of taxol-loaded MSC544 exosomes displayed superior tumor-reducing capabilities as compared to application of taxol exosomes by oral gavage. To broaden this therapeutic spectrum, epirubicin was applied to MSC544, and the derived exosomes likewise exhibited significant cytotoxic effects in different cancer cell cultures. These findings suggest an unlimited source for large-scale exosome production with reproducible quality to enable variable drug targeting of tumors or other diseases.


Sign in / Sign up

Export Citation Format

Share Document