Multiplex PCR assays for the detection of clinically relevant antibiotic resistance genes in staphylococci isolated from patients infected after cardiac surgery

2000 ◽  
Vol 46 (4) ◽  
pp. 527-534 ◽  
Author(s):  
F. Martineau ◽  
F. J. Picard ◽  
L. Grenier ◽  
P. H. Roy ◽  
M. Ouellette ◽  
...  
2000 ◽  
Vol 44 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Francis Martineau ◽  
François J. Picard ◽  
Nicolas Lansac ◽  
Christian Ménard ◽  
Paul H. Roy ◽  
...  

ABSTRACT Clinical isolates of Staphylococcus aureus (a total of 206) and S. epidermidis (a total of 188) from various countries were tested with multiplex PCR assays to detect clinically relevant antibiotic resistance genes associated with staphylococci. The targeted genes are implicated in resistance to oxacillin (mecA), gentamicin [aac(6′)-aph(2")], and erythromycin (ermA, ermB, ermC, andmsrA). We found a nearly perfect correlation between genotypic and phenotypic analysis for most of these 394 strains, showing the following correlations: 98% for oxacillin resistance, 100% for gentamicin resistance, and 98.5% for erythromycin resistance. The discrepant results were (i) eight strains found to be positive by PCR for mecA or ermC but susceptible to the corresponding antibiotic based on disk diffusion and (ii) six strains of S. aureus found to be negative by PCR for mecA or for the four erythromycin resistance genes targeted but resistant to the corresponding antibiotic. In order to demonstrate in vitro that the eight susceptible strains harboring the resistance gene may become resistant, we subcultured the susceptible strains on media with increasing gradients of the antibiotic. We were able to select cells demonstrating a resistant phenotype for all of these eight strains carrying the resistance gene based on disk diffusion and MIC determinations. The four oxacillin-resistant strains negative for mecA were PCR positive for blaZand had the phenotype of β-lactamase hyperproducers, which could explain their borderline oxacillin resistance phenotype. The erythromycin resistance for the two strains found to be negative by PCR is probably associated with a novel mechanism. This study reiterates the usefulness of DNA-based assays for the detection of antibiotic resistance genes associated with staphylococcal infections.


2019 ◽  
Vol 22 (4) ◽  
pp. 419-427
Author(s):  
S. Nouri Gharajalar ◽  
M. Onsori

Multidrug resistant Staphylococcus aureus strains are a major health care problem both in humans and animals. In this work we described three multiplex PCR assays for detection of clinically relevant antibiotic resistance genes in S. aureus isolated from dog dental plaques. Thirty dental plaque samples were collected; then cultural, biochemical and molecular tests performed for isolation and identification of S. aureus from samples. The antibiotic susceptibility of the isolates were checked by Kirby Bauer disc diffusion method and the prevalence of antibiotic resistance genes determined using multiplex PCR assay. As a result S. aureus was isolated from 18 dog plaque samples. Fifteen of these isolates were resistant to penicillin. The mecA gene was more prevalent than blaZ among penicillin-resistant bacteria. Ten of the isolates were resistant to tetracycline. The percentage of tetM was higher than tetK among them. Also, 10 of the isolates were resistant to cefazolin among them bla TEM detected in higher rate than blaSHV and blaOXA-1. Hence multiplex PCR assay is a suitable method for detection of antibiotic resistance patterns of S. aureus isolates.


2008 ◽  
Vol 53 (4) ◽  
pp. 357-362 ◽  
Author(s):  
T. Zmantar ◽  
K. Chaieb ◽  
F. Ben Abdallah ◽  
A. Ben Kahla-Nakbi ◽  
A. Ben Hassen ◽  
...  

Author(s):  
Mahdieh Nabavinia ◽  
Mohammad Bagher Khalili ◽  
Maryam Sadeh ◽  
Gilda Eslami ◽  
Mahmood Vakili ◽  
...  

Background and Objectives: Due to the important role of Streptococcus agalactiae, Group B streptococci (GBS), in production of invasive disease in neonates, investigation regarding the pathogenicity and antibiotic resistance factors is necessary in selecting the appropriate therapeutic agents. Beside capsule, the pilus has been currently recognized as an important factor in enhancing the pathogenicity of GBS. Resistance of GBS to selected antibiotics is noticeably increasing which is mainly due to the anomalous use of these drugs for treatment. The aim of this study was to determine the prevalence of pili genes followed by antibiotic susceptibility of GBS, previously serotyped, isolated from pregnant women in the city of Yazd, Iran. Materials and Methods: Fifty seven GBS from pregnant women were subjected to multiplex PCR for determination of PI-1, PI-2a and PI-2b pilus-islands and simultaneously, the phenotype of antibiotic resistance to penicillin, tetracycline, erythromycin, clindamycin, gentamycin and levofloxacin was determined. Antibiotic resistance genes (ermA, ermB, mefA, tetM, int-Tn) were further diagnosed using PCR and multiplex PCR. Results: PI-1+PI-2a with 71.9%; followed by PI-2a (21.1%) and PI-2b (7%) were observed. PI-1+PI-2a in serotype III was (73.2%), serotype II, Ia, Ib and V were 12.2%, 9.8%, 2.4% and 2.4% respectively. GBS penicillin sensitive was 89.5% and 96.5% resistance to tetracycline. The frequency of resistance genes were as follows: tetM (93%), ermA (33.3%), ermB (8.8%), int-Tn (80.7%) and mefA (0). Conclusion: Majority of GBS contained PI-1+PI-2a. Hence presence of this pilus stabilizes the colonization, therefore designing a program for diagnosing and treatment of infected pregnant women seems to be necessary.


2020 ◽  
Author(s):  
Trinh Phan-Canh ◽  
Thao Le-Thi-Thanh ◽  
Thuy Ngo-Thi-Bich ◽  
Thanh Nguyen-Thi-Thanh ◽  
Linh Ho-Le-Truc ◽  
...  

AbstractAcinetobacter baumannii is the leading cause of hospital-acquired infection in Vietnam. Of note, antibiotic resistance genes are significantly popular in clinical isolates of A. baumannii. Therefore, rapid identification of A. baumannii and determination of antibiotic resistance genes will help to make effective clinical decisions related to antibiotic use. This paper proposes a multiplex PCR to identify Acinetobacter baumannii and detect their ß-lactam antibiotic resistance genes in clinical isolates. Multiplex PCR was applied to amplified recA gene and region ITS 16S - 23S rDNA for Rapid detection of A. baumannii. The two antibiotic resistance genes - blaOXA-51-like, ampC gene - were detected by multiplex PCR and three genes coding Extended-spectrum beta-lactamases - blaCTX-M, blaTEM, blaSHV genes - were subjected to PCR. 49 bacteria strains were subjected to colony PCR. The result showed that 46 strains were A. baumannii and 3 strains belonged to the genus Acinetobacter. The multiplex PCR showed that all of 46 A. baumannii containing the blaOXA-51-like gene and the AmpC gene; 34 strains possess the gene blaTEM and none of them has blaCTX-M and blaSHV genes. The results of the multiplex PCR are the same as those of the in vitro antibiotic sensitivity testing of A. baumannii. However, applying the multiplex PCR directly from the bacteria colony, we can proceed simultaneously with the bacterial identification and the antibiotic resistance gene detection.Highlights100% of isolates of A. baumannii contains the blaOXA-51-like gene and the AmpC gene.34/46 isolates possess the gene blaTEM, however, do not contain blaCTX-M and blaSHV genes.Combined disc test with cefotaxime/clavulanic acid/boronic acid is an excellent method to analyse ESBL phenotype.


Infection ◽  
2017 ◽  
Vol 46 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Cihan Papan ◽  
Melanie Meyer-Buehn ◽  
Gudrun Laniado ◽  
Thomas Nicolai ◽  
Matthias Griese ◽  
...  

2019 ◽  
Vol 63 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Ewelina Pyzik ◽  
Agnieszka Marek ◽  
Dagmara Stępień-Pyśniak ◽  
Renata Urban-Chmiel ◽  
Łukasz S. Jarosz ◽  
...  

AbstractIntroduction:The study sought to characterise antimicrobial resistance among coagulase-negativeStaphylococcus(CNS) species recovered from broiler chickens and turkeys in Poland including the presence of 12 antimicrobial resistance genes and five classical genes of staphylococcal enterotoxins.Material and Methods:A panel of 11 antimicrobial disks evaluated the phenotypic sensitivity of the tested strains to antibiotics. Five multiplex PCR assays were performed using primer pairs for specific detection of antibiotic resistance genes and staphylococcal enterotoxin A to E genes.Results:Selected antimicrobial agent susceptibility testing revealed 100% of such inin vitroconditions to cefoxitin among strains ofStaphylococcus sciuriandS. chromogenes. TheblaZ (for ß-lactam) andmecA (for methicillin resistance) genes were in 58.3% and 27.5% of strains, respectively. Among genes resistant to tetracyclines,tetK was most frequent. Fewer (CNS) strains showed genes resistant to macrolides, lincosamides, and florfenicol/chloramphenicol. Multiplex PCR for classical enterotoxins (A-E) detected theseegene in twoS. hominisstrains, while thesebgene producing enterotoxin B was found in one strain ofS. epidermidis.Conclusion:CNS strains ofStaphylococcusisolated from poultry were either phenotypically or genotypically multidrug resistant. Testing for the presence of the five classical enterotoxin genes showed that CNS strains, as in the case ofS. aureusstrains, can be a source of food intoxications.


Sign in / Sign up

Export Citation Format

Share Document