Global clonal spread of mcr-3-carrying MDR ST34 Salmonella enterica serotype Typhimurium and monophasic 1,4,[5],12:i:− variants from clinical isolates

2020 ◽  
Vol 75 (7) ◽  
pp. 1756-1765
Author(s):  
Ruan-Yang Sun ◽  
Bi-Xia Ke ◽  
Liang-Xing Fang ◽  
Wen-Ying Guo ◽  
Xing-Ping Li ◽  
...  

Abstract Objectives To investigate the prevalence and transmission of mcr-3 among Salmonella enterica serotype Typhimurium and 1,4,[5],12:i:−. Methods A total of 4724 clinical Salmonella isolates were screened for the presence of mcr-3 in China during 2014–19. The clonal relationship of the mcr-3-positive isolates and their plasmid contents and complete sequence were also characterized based on WGS data from the Illumina and MinION platforms. Results We identified 10 mcr-3-positive isolates, and all were MDR, mostly resistant to colistin, cefotaxime, ciprofloxacin, doxycycline and florfenicol. mcr-3 was co-present with blaCTX-M-55-qnrS1 on hybrid ST3-IncC-FII conjugatable plasmids (n = 6) and an ST3-IncC non-conjugatable plasmid (n = 1) and embedded into a pCHL5009T-like IncFII plasmid on the Salmonella chromosome (n = 3). Four distinctive genetic contexts surrounded mcr-3 and all but one were closely related to each other and to the corresponding region of IncFII plasmid pCHL5009T. IS15DI was most likely the vehicle for integration of mcr-3-carrying IncFII plasmids into ST3-IncC plasmids and the chromosome and for shaping the MDR regions. In addition, a phylogenetic tree based on the core genome revealed a unique Salmonella lineage (≤665 SNPs) that contained these 10 mcr-3-positive isolates and another 38 (33 from patients) mcr-3-positive Salmonella from five countries. In particular, most of the 51 mcr-3-positive isolates belonged to ST34 and harboured diverse antibiotic resistance genes (ARGs), including mcr-3-blaCTX-M-55-qnrS1, and possessed similar ARG profiles. Conclusions Our findings revealed global clonal spread of MDR ST34 Salmonella from clinical isolates co-harbouring mcr-3 with blaCTX-M-55 and qnrS1 and a flexibility of mcr-3 co-transmittance with other ARGs mediated by mobile genetic elements.

2011 ◽  
Vol 55 (9) ◽  
pp. 4267-4276 ◽  
Author(s):  
Vinod Kumar ◽  
Peng Sun ◽  
Jessica Vamathevan ◽  
Yong Li ◽  
Karen Ingraham ◽  
...  

ABSTRACTThere is a global emergence of multidrug-resistant (MDR) strains ofKlebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. While the epidemiology ofK. pneumoniaestrains and occurrences of specific antibiotic resistance genes, such as plasmid-borne extended-spectrum β-lactamases (ESBLs), have been extensively studied, only four complete genomes ofK. pneumoniaeare available. To better understand the multidrug resistance factors inK. pneumoniae, we determined by pyrosequencing the nearly complete genome DNA sequences of two strains with disparate antibiotic resistance profiles, broadly drug-susceptible strain JH1 and strain 1162281, which is resistant to multiple clinically used antibiotics, including extended-spectrum β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, and sulfamethoxazoles. Comparative genomic analysis of JH1, 1162281, and other publishedK. pneumoniaegenomes revealed a core set of 3,631 conserved orthologous proteins, which were used for reconstruction of whole-genome phylogenetic trees. The close evolutionary relationship between JH1 and 1162281 relative to otherK. pneumoniaestrains suggests that a large component of the genetic and phenotypic diversity of clinical isolates is due to horizontal gene transfer. Using curated lists of over 400 antibiotic resistance genes, we identified all of the elements that differentiated the antibiotic profile of MDR strain 1162281 from that of susceptible strain JH1, such as the presence of additional efflux pumps, ESBLs, and multiple mechanisms of fluoroquinolone resistance. Our study adds new and significant DNA sequence data onK. pneumoniaestrains and demonstrates the value of whole-genome sequencing in characterizing multidrug resistance in clinical isolates.


2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Larry Feinstein ◽  
Kendra Batchelder ◽  
Lydia Tilley ◽  
Grace Stafford

ABSTRACT We report the draft genome sequences of 27 common pathogens collected from a northern Maine hospital in 2017. These were sequenced in order to determine temporal and biogeographical patterns of antibiotic gene distribution. A total of 908 antibiotic resistance genes, 848 insertion sequence elements, and 57 plasmids were identified.


Author(s):  
Bingbing Du ◽  
Qingxiang Yang ◽  
Ruifei Wang ◽  
Ruimin Wang ◽  
Qiang Wang ◽  
...  

The removal of antibiotics and widespread of antibiotic resistance genes (ARGs) have received continuous attention due to the possible threats to environment. However, little information is available on the evolution of antibiotic resistance and the relationship between ARGs and microbial communities under long-term exposure to sub-inhibitory concentrations of antibiotics. In our study, two laboratory-scale anoxic-aerobic wastewater treatment systems were established and operated for 420 days to investigate the evolution of antibiotic resistance under exposure of 5 mg·L−1 tetracycline (TC) or 5 mg·L−1 TC and 1 mg·L−1 sulfamethoxazole (SMX). The average removal rates of TC and SMX were about 59% and 72%, respectively. The abundance of the main ARGs responsible for resistance to TC and SMX increased obviously after antibiotics addition, especially when TC and SMX in combination (increased 3.20-fold). The tetC and sul1 genes were the predominant genes in the development of TC and SMX resistance, in which gene sul1 had the highest abundance among all the detected ARGs. Network analysis revealed that under antibiotic pressure, the core bacterial groups carrying multiple ARGs formed and concentrated in about 20 genera such as Dechloromonas, Candidatus Accumulibacter, Aeromonas, Rubrivivax, in which intI1 played important roles in transferring various ARGs except sul3.


2002 ◽  
Vol 46 (9) ◽  
pp. 2821-2828 ◽  
Author(s):  
Alessandra Carattoli ◽  
Emma Filetici ◽  
Laura Villa ◽  
Anna Maria Dionisi ◽  
Antonia Ricci ◽  
...  

ABSTRACT Fifty-four epidemiologically unrelated multidrug-resistant Salmonella enterica serovar Typhimurium isolates, collected between 1992 and 2000 in Italy, were analyzed for the presence of integrons. Strains were also tested for Salmonella genomic island 1 (SGI1), carrying antibiotic resistance genes in DT104 strains. A complete SGI1 was found in the majority of the DT104 strains. Two DT104 strains, showing resistance to streptomycin-spectinomycin and sulfonamides, carried a partially deleted SGI1 lacking the flost , tetR, and tetA genes, conferring chloramphenicol-florfenicol and tetracycline resistance, and the integron harboring the pse-1 gene cassette, conferring ampicillin resistance. The presence of SGI1 was also observed in serovar Typhimurium strains belonging to other phage types, suggesting either the potential mobility of this genomic island or changes in the phage-related phenotype of DT104 strains.


2020 ◽  
Vol 75 (10) ◽  
pp. 2804-2811
Author(s):  
Yii-Lih Lin ◽  
Tsegaye Sewunet ◽  
Sriram KK ◽  
Christian G Giske ◽  
Fredrik Westerlund

Abstract Objectives MDR bacteria have become a prevailing health threat worldwide. We here aimed to use optical DNA mapping (ODM) as a rapid method to trace nosocomial spread of bacterial clones and gene elements. We believe that this method has the potential to be a tool of pivotal importance for MDR control. Methods Twenty-four Escherichia coli samples of ST410 from three different wards were collected at an Ethiopian hospital and their plasmids were analysed by ODM. Plasmids were specifically digested with Cas9 targeting the antibiotic resistance genes, stained by competitive binding and confined in nanochannels for imaging. The resulting intensity profiles (barcodes) for each plasmid were compared to identify potential clonal spread of resistant bacteria. Results ODM demonstrated that a large fraction of the patients carried bacteria with a plasmid of the same origin, carrying the ESBL gene blaCTX-M-15, suggesting clonal spread. The results correlate perfectly with core genome (cg)MLST data, where bacteria with the same plasmid also had very similar cgMLST profiles. Conclusions ODM is a rapid discriminatory method for identifying plasmids and antibiotic resistance genes. Long-range deletions/insertions, which are challenging for short-read next-generation sequencing, can be easily identified and used to trace bacterial clonal spread. We propose that plasmid typing can be a useful tool to identify clonal spread of MDR bacteria. Furthermore, the simplicity of the method enables possible future application in low- and middle-income countries.


Sign in / Sign up

Export Citation Format

Share Document