scholarly journals Comparative Genomics of Klebsiella pneumoniae Strains with Different Antibiotic Resistance Profiles

2011 ◽  
Vol 55 (9) ◽  
pp. 4267-4276 ◽  
Author(s):  
Vinod Kumar ◽  
Peng Sun ◽  
Jessica Vamathevan ◽  
Yong Li ◽  
Karen Ingraham ◽  
...  

ABSTRACTThere is a global emergence of multidrug-resistant (MDR) strains ofKlebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. While the epidemiology ofK. pneumoniaestrains and occurrences of specific antibiotic resistance genes, such as plasmid-borne extended-spectrum β-lactamases (ESBLs), have been extensively studied, only four complete genomes ofK. pneumoniaeare available. To better understand the multidrug resistance factors inK. pneumoniae, we determined by pyrosequencing the nearly complete genome DNA sequences of two strains with disparate antibiotic resistance profiles, broadly drug-susceptible strain JH1 and strain 1162281, which is resistant to multiple clinically used antibiotics, including extended-spectrum β-lactams, fluoroquinolones, aminoglycosides, trimethoprim, and sulfamethoxazoles. Comparative genomic analysis of JH1, 1162281, and other publishedK. pneumoniaegenomes revealed a core set of 3,631 conserved orthologous proteins, which were used for reconstruction of whole-genome phylogenetic trees. The close evolutionary relationship between JH1 and 1162281 relative to otherK. pneumoniaestrains suggests that a large component of the genetic and phenotypic diversity of clinical isolates is due to horizontal gene transfer. Using curated lists of over 400 antibiotic resistance genes, we identified all of the elements that differentiated the antibiotic profile of MDR strain 1162281 from that of susceptible strain JH1, such as the presence of additional efflux pumps, ESBLs, and multiple mechanisms of fluoroquinolone resistance. Our study adds new and significant DNA sequence data onK. pneumoniaestrains and demonstrates the value of whole-genome sequencing in characterizing multidrug resistance in clinical isolates.

2016 ◽  
Vol 60 (3) ◽  
pp. 1801-1818 ◽  
Author(s):  
Nabil Karah ◽  
Chinmay Kumar Dwibedi ◽  
Karin Sjöström ◽  
Petra Edquist ◽  
Anders Johansson ◽  
...  

Acinetobacter baumanniihas emerged as an important opportunistic pathogen equipped with a growing number of antibiotic resistance genes. Our study investigated the molecular epidemiology and antibiotic resistance features of 28 consecutive carbapenem-resistant clinical isolates ofA. baumanniicollected throughout Sweden in 2012 and 2013. The isolates mainly belonged to clonal complexes (CCs) with an extensive international distribution, such as CC2 (n= 16) and CC25 (n= 7). Resistance to carbapenems was related toblaOXA-23(20 isolates),blaOXA-24/40-like(6 isolates),blaOXA-467(1 isolate), and ISAba1-blaOXA-69(1 isolate). Ceftazidime resistance was associated withblaPER-7in the CC25 isolates. Two classical point mutations were responsible for resistance to quinolones in all the isolates. Isolates with high levels of resistance to aminoglycosides carried the 16S rRNA methylasearmAgene. The isolates also carried a variety of genes encoding aminoglycoside-modifying enzymes. Several novel structures involved in aminoglycoside resistance were identified, including Tn6279, ΔTn6279, Ab-ST3-aadB, and different assemblies of Tn6020and TnaphA6. Importantly, a number of circular forms related to the IS26or ISAba125composite transposons were detected. The frequent occurrence of these circular forms in the populations of several isolates indicates a potential role of these circular forms in the dissemination of antibiotic resistance genes.


2016 ◽  
Vol 60 (4) ◽  
pp. 2548-2550 ◽  
Author(s):  
Charbel Al-Bayssari ◽  
Abiola Olumuyiwa Olaitan ◽  
Thongpan Leangapichart ◽  
Liliane Okdah ◽  
Fouad Dabboussi ◽  
...  

ABSTRACTWe analyzed the whole-genome sequence of ablaOXA-48-harboringRaoultella ornithinolyticaclinical isolate from a patient in Lebanon. The size of theRaoultella ornithinolyticaCMUL058 genome was 5,622,862 bp, with a G+C content of 55.7%. We deciphered all the molecular mechanisms of antibiotic resistance, and we compared our genome to other availableR. ornithinolyticagenomes in GenBank. The resistome consisted of 9 antibiotic resistance genes, including a plasmidicblaOXA-48gene whose genetic organization is also described.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254805
Author(s):  
Assia Zemmour ◽  
Radia Dali-Yahia ◽  
Makaoui Maatallah ◽  
Nadjia Saidi-Ouahrani ◽  
Bouabdallah Rahmani ◽  
...  

The purpose of the study was to characterize the resistome, virulome, mobilome and Clustered Regularly Interspaced Short Palindromic Repeats-associated (CRISPR-Cas) system of extended-spectrum β-lactamase producing Klebsiella pneumoniae (ESBL-KP) clinical isolates and to determine their phylogenetic relatedness. The isolates were from Algeria, isolated at the University Hospital Establishment of Oran, between 2011 and 2012. ESBL-KP isolates (n = 193) were screened for several antibiotic resistance genes (ARGs) using qPCR followed by Pulsed-Field Gel Electrophoresis (PFGE). Representative isolates were selected from PFGE clusters and subjected to whole-genome sequencing (WGS). Genomic characterization of the WGS data by studying prophages, CRISPR-Cas systems, Multi-Locus Sequence Typing (MLST), serotype, ARGs, virulence genes, plasmid replicons, and their pMLST. Phylogenetic and comparative genomic were done using core genome MLST and SNP-Based analysis. Generally, the ESBL-KP isolates were polyclonal. The whole genome sequences of nineteen isolates were taken of main PFGE clusters. Sixteen sequence types (ST) were found including high-risk clones ST14, ST23, ST37, and ST147. Serotypes K1 (n = 1), K2 (n = 2), K3 (n = 1), K31 (n = 1), K62 (n = 1), and K151 (n = 1) are associated with hyper-virulence. CRISPR-Cas system was found in 47.4%, typed I-E and I-E*. About ARGs, from 193 ESBL-KP, the majority of strains were multidrug-resistant, the CTX-M-1 enzyme was predominant (99%) and the prevalence of plasmid-mediated quinolone resistance (PMQR) genes was high with aac(6′)-lb-cr (72.5%) and qnr’s (65.8%). From 19 sequenced isolates we identified ESBL, AmpC, and carbapenemase genes: blaCTX-M-15 (n = 19), blaOXA-48 (n = 1), blaCMY-2 (n = 2), and blaCMY-16 (n = 2), as well as non-ESBL genes: qnrB1 (n = 12), qnrS1 (n = 1) and armA (n = 2). We found IncF, IncN, IncL/M, IncA/C2, and Col replicon types, at least once per isolate. This study is the first to report qnrS in ESBL-KP in Algeria. Our analysis shows the concerning co-existence of virulence and resistance genes and would support that genomic surveillance should be a high priority in the hospital environment.


2016 ◽  
Vol 60 (7) ◽  
pp. 4336-4338 ◽  
Author(s):  
Qiu E. Yang ◽  
Timothy Rutland Walsh ◽  
Bao Tao Liu ◽  
Meng Ting Zou ◽  
Hui Deng ◽  
...  

ABSTRACTWe sequenced a novel conjugative multidrug resistance IncF plasmid, p42-2, isolated fromEscherichia colistrain 42-2, previously identified in China. p42-2 is 106,886 bp long, composed of a typical IncFII-type backbone (∼54 kb) and one distinct acquired DNA region spanning ∼53 kb, harboring 12 antibiotic resistance genes [blaCTX-M-55,oqxA,oqxB,fosA3,floR,tetA(A),tetA(R),strA,strB,sul2,aph(3′)-II, and ΔblaTEM-1]. The spread of these multidrug resistance determinants on the same plasmid is of great concern and, because of coresistance to antibiotics from different classes, is therapeutically challenging.


2011 ◽  
Vol 55 (10) ◽  
pp. 4506-4512 ◽  
Author(s):  
Hua Zhou ◽  
Tongwu Zhang ◽  
Dongliang Yu ◽  
Borui Pi ◽  
Qing Yang ◽  
...  

ABSTRACTWe previously reported that the multidrug-resistant (MDR)Acinetobacter baumanniistrain MDR-ZJ06, belonging to European clone II, was widely spread in China. In this study, we report the whole-genome sequence of this clinically important strain. A 38.6-kb AbaR-type genomic resistance island (AbaR22) was identified in MDR-ZJ06. AbaR22 has a structure similar to those of the resistance islands found inA. baumanniistrains AYE and AB0057, but it contained only a few antibiotic resistance genes. The region of resistant gene accumulation as previously described was not found in AbaR22. In the chromosome of the strain MDR-ZJ06, we identified the geneblaoxa-23in a composite transposon (Tn2009). Tn2009shared the backbone with otherA. baumanniitransponsons that harborblaoxa-23, but it was bracketed by two ISAba1elements which were transcribed in the same orientation. MDR-ZJ06 also expressed thearmAgene on its plasmid pZJ06, and this gene has the same genetic environment as thearmAgene of theEnterobacteriaceae. These results suggest variability of resistance acquisition even in closely relatedA. baumanniistrains.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Cristian Ruiz ◽  
Ashley McCarley ◽  
Manuel Luis Espejo ◽  
Kerry K. Cooper ◽  
Dana E. Harmon

ABSTRACT The Gram-negative bacterium Cupriavidus gilardii is an emerging multidrug-resistant pathogen found in many environments. However, little is known about this species or its antibiotic resistance mechanisms. We used biochemical tests, antibiotic susceptibility experiments, and whole-genome sequencing to characterize an environmental C. gilardii isolate. Like clinical isolates, this isolate was resistant to meropenem, gentamicin, and other antibiotics. Resistance to these antibiotics appeared to be related to the large number of intrinsic antibiotic resistance genes found in this isolate. As determined by comparative genomics, this resistome was also well conserved in the only two other C. gilardii strains sequenced to date. The intrinsic resistome of C. gilardii did not include the colistin resistance gene mcr-5, which was in a transposon present only in one strain. The intrinsic resistome of C. gilardii was comprised of (i) many multidrug efflux pumps, such as a homolog of the Pseudomonas aeruginosa MexAB-OprM pump that may be involved in resistance to meropenem, other β-lactams, and aminoglycosides; (ii) a novel β-lactamase (OXA-837) that decreases susceptibility to ampicillin but not to other β-lactams tested; (iii) a new aminoglycoside 3-N-acetyltransferase [AAC(3)-IVb, AacC10] that decreases susceptibility to gentamicin and tobramycin; and (iv) a novel partially conserved aminoglycoside 3ʺ-adenylyltransferase [ANT(3ʺ)-Ib, AadA32] that decreases susceptibility to spectinomycin and streptomycin. These findings provide the first mechanistic insight into the intrinsic resistance of C. gilardii to multiple antibiotics and its ability to become resistant to an increasing number of drugs during therapy. IMPORTANCE Cupriavidus gilardii is a bacterium that is gaining increasing attention both as an infectious agent and because of its potential use in the detoxification of toxic compounds and other biotechnological applications. In recent years, however, there has been an increasing number of reported infections, some of them fatal, caused by C. gilardii. These infections are hard to treat because this bacterium is naturally resistant to many antibiotics, including last-resort antibiotics, such as carbapenems. Moreover, this bacterium often becomes resistant to additional antibiotics during therapy. However, little is known about C. gilardii and its antibiotic resistance mechanisms. The significance of our research is in providing, for the first time, whole-genome information about the natural antibiotic resistance genes found in this bacterium and their conservation among different C. gilardii strains. This information may provide new insights into the appropriate use of antibiotics in combating infections caused by this emerging pathogen.


2014 ◽  
Vol 58 (12) ◽  
pp. 7367-7374 ◽  
Author(s):  
Antony T. Vincent ◽  
Mélanie V. Trudel ◽  
Valérie E. Paquet ◽  
Brian Boyle ◽  
Katherine H. Tanaka ◽  
...  

ABSTRACTThe ubiquitous water-borne Gram-negative bacteriumAeromonas salmonicidasubsp.salmonicidais the causative agent of furunculosis, a worldwide disease in fish farms. Plasmids carrying antibiotic resistance genes have already been described for this bacterium. The aim of the present study was to identify and characterize additional multidrug resistance plasmids inA. salmonicidasubsp.salmonicida. We sequenced the plasmids present in two multiple antibiotic-resistant isolates using high-throughput technologies. We also investigated 19 other isolates with various multidrug resistance profiles by genotyping PCR and assessed their resistance to tetracycline. We identified variants of the pAB5S9 and pSN254 plasmids that carry several antibiotic resistance genes and that have been previously reported in bacteria other thanA. salmonicidasubsp.salmonicida, which suggests a high level of interspecies exchange. Genotyping analyses and the antibiotic resistance profiles of the 19 other isolates support the idea that multiple versions of pAB5S9 and pSN254 exist inA. salmonicidasubsp.salmonicida. We also identified variants of the pRAS3 plasmid. The present study revealed thatA. salmonicidasubsp.salmonicidaharbors a wide variety of plasmids, which suggests that this ubiquitous bacterium may contribute to the spread of antibiotic resistance genes in the environment.


2019 ◽  
Vol 12 (4) ◽  
pp. 578-583 ◽  
Author(s):  
Meutia Hayati ◽  
Agustin Indrawati ◽  
Ni Luh Putu Ika Mayasari ◽  
Istiyaningsih Istiyaningsih ◽  
Neneng Atikah

Background and Aim: Klebsiella pneumoniae is one of the respiratory disease agents in human and chicken. This bacterium is treated by antibiotic, but this treatment may trigger antibiotic resistance. Resistance gene in K. pneumoniae may be transferred to other bacteria. One of the known resistance genes is extended-spectrum β-lactamase (ESBL). This research aimed to study K. pneumoniae isolated from chicken farms in East Java, Indonesia, by observing the antibiotic resistance pattern and detect the presence of ESBL coding gene within the isolates. Materials and Methods: A total of 11 K. pneumoniae isolates were collected from 141 chicken cloacal swabs from two regencies in East Java. All isolates were identified using the polymerase chain reaction method. Antimicrobial susceptibility was determined by agar dilution method on identified isolates, which then processed for molecular characterization to detect ESBL coding gene within the K. pneumoniae isolates found. Results: The result of antibiotic sensitivity test in 11 isolates showed highest antibiotic resistance level toward ampicillin, amoxicillin, and oxytetracycline (100%, 100%, and 90.9%) and still sensitive to gentamicin. Resistance against colistin, doxycycline, ciprofloxacin, and enrofloxacin is varied by 90.9%, 54.5%, 27.3%, and 18.2%, respectively. All isolates of K. pneumoniae were classified as multidrug resistance (MDR) bacteria. Resistance gene analysis revealed the isolates harbored as blaSHV (9.1%), blaTEM (100%), and blaCTX-M (90.9%). Conclusion: All the bacterial isolates were classified as MDR bacteria and harbored two of the transmissible ESBL genes. The presence of antibiotic resistance genes in bacteria has the potential to spread its resistance properties.


2021 ◽  
Vol 14 (4) ◽  
pp. 1847-1854
Author(s):  
Vaibhavi Patel

A simple explanation for antimicrobial-resistant opportunistic infections in immunocompromised patients is Klebsiella pneumoniae which gradually being associated in insidious infections globally with high mortality rate. Eight hundred fifty-six antibiotic resistant K. pneumoniae isolates were collected over 3 years period (from different wards and different specimens) from the Microbiology department of C.U. Shah hospital, whose AST checked by Kirby Bauer disk diffusion method. To study AMR genes, virulome, interference of virulence gene with resistance gene, phylogenomic; 6 clinical isolates were proceeded for whole genome sequencing and bio informatics analysis. Klebsiella pneumoniae is a multidrug-resistant (MDR) opportunistic and one of delegate of ESKAPE pathogens groups. This pathogen causes nosocomial infections, urinary tract infections, liver abscesses, wound infections, meningitis. These strains obtain a multidrug resistant phenotype by way of horizontal transfer of ARG transported by either transposons or plasmids. This transfer is generally facilitated by Integrons. In this study antibiotic resistance profile and antibiotic resistance genes analysis as well as virulence gene of K. pneumoniae strains were investigated. The study was carried out using 853 clinical isolates collected during 3 years from C.U. Shah hospital of Surendranagar. Antibiotic resistance profile test was carried out by the VITEK 2 against 21 antibiotics. Out of that 6 samples were proceed for DNA extraction, WGS illumina sequencer and analysis of those raw sequences by TORMES pipeline. In this study antibiotic resistance profile included 13 beta lactam antibiotics which classified under 3 class (Penicillin, Cephalosporin, Carbapenem) of beta lactam and in AMR gene study got total 15 different ESBL resistance genes from 6 different klebsiella pneumoniae strain. All these genes detected with more than 90% identity by CARD. (TORMES Pipeline) CTX-M-15, NDM-5, OKP-B-6, PDC-2, OXA-1, OXA-181, OXA-362, OXA-50, OXA-9, SHV-1, SHV-11, SHV-187, TEM-1, TEM-150. In this study, we’ve analyzed the pattern of antibiotic resistance pattern as a phenotypic characteristic and antibiotic resistance genes as genotypic characteristic and co related the results. As multidrug resistance is a worrying matter, constant observation and regular clinical recognition of resistant bacteria are essential to avoid terrible public health incidents. So, our data should be inferred as a warning for need for prevention and control of the MDR K. pneumoniae in hospital settings.


mSystems ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Steven Dunn ◽  
Laura Carrilero ◽  
Michael Brockhurst ◽  
Alan McNally

ABSTRACT Multidrug-resistant (MDR) Escherichia coli strains are a major global threat to human health, wherein multidrug resistance is primarily spread by MDR plasmid acquisition. MDR plasmids are not widely distributed across the entire E. coli species, but instead are concentrated in a small number of clones. Here, we test if diverse E. coli strains vary in their ability to acquire and maintain MDR plasmids and if this relates to their transcriptional response following plasmid acquisition. We used strains from across the diversity of E. coli strains, including the common MDR lineage sequence type 131 (ST131) and the IncF plasmid pLL35, carrying multiple antibiotic resistance genes. Strains varied in their ability to acquire pLL35 by conjugation, but all were able to stably maintain the plasmid. The effects of pLL35 acquisition on cefotaxime resistance and growth also varied among strains, with growth responses ranging from a small decrease to a small increase in growth of the plasmid carrier relative to the parental strain. Transcriptional responses to pLL35 acquisition were limited in scale and highly strain specific. We observed transcriptional responses at the operon or regulon level—possibly due to stress responses or interactions with resident mobile genetic elements (MGEs). Subtle transcriptional responses consistent across all strains were observed affecting functions, such as anaerobic metabolism, previously shown to be under negative frequency-dependent selection in MDR E. coli. Overall, there was no correlation between the magnitudes of the transcriptional and growth responses across strains. Together, these data suggest that fitness costs arising from transcriptional disruption are unlikely to act as a barrier to dissemination of this MDR plasmid in E. coli. IMPORTANCE Plasmids play a key role in bacterial evolution by transferring adaptive functions between lineages that often enable invasion of new niches, including driving the spread of antibiotic resistance genes. Fitness costs of plasmid acquisition arising from the disruption of cellular processes could limit the spread of multidrug resistance plasmids. However, the impacts of plasmid acquisition are typically measured in lab-adapted strains rather than natural isolates, which act as reservoirs for the maintenance and transmission of plasmids to clinically relevant strains. Using a clinical multidrug resistance plasmid and a diverse collection of E. coli strains isolated from clinical infections and natural environments, we show that plasmid acquisition had only limited and highly strain-specific effects on bacterial growth and transcription under laboratory conditions. These findings suggest that fitness costs arising from transcriptional disruption are unlikely to act as a barrier to transmission of this plasmid in natural populations of E. coli.


Sign in / Sign up

Export Citation Format

Share Document