scholarly journals Evolution of IncHI2 plasmids via acquisition of transposons carrying antibiotic resistance determinants

2012 ◽  
Vol 67 (5) ◽  
pp. 1121-1127 ◽  
Author(s):  
A. K. Cain ◽  
R. M. Hall
2007 ◽  
Vol 73 (20) ◽  
pp. 6566-6576 ◽  
Author(s):  
Moussa S. Diarra ◽  
Fred G. Silversides ◽  
Fatoumata Diarrassouba ◽  
Jane Pritchard ◽  
Luke Masson ◽  
...  

ABSTRACT The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla TEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla CMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.


2021 ◽  
Vol 9 (3) ◽  
pp. 651
Author(s):  
Alice Roedel ◽  
Szilvia Vincze ◽  
Michaela Projahn ◽  
Uwe Roesler ◽  
Caroline Robé ◽  
...  

Biocides are frequently applied as disinfectants in animal husbandry to prevent the transmission of drug-resistant bacteria and to control zoonotic diseases. Concerns have been raised, that their use may contribute to the selection and persistence of antimicrobial-resistant bacteria. Especially, extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli have become a global health threat. In our study, 29 ESBL-/AmpC-producing and 64 NON-ESBL-/AmpC-producing E.coli isolates from three German broiler fattening farms collected in 2016 following regular cleaning and disinfection were phylogenetically characterized by whole genome sequencing, analyzed for phylogenetic distribution of virulence-associated genes, and screened for determinants of and associations between biocide tolerance and antibiotic resistance. Of the 30 known and two unknown sequence types detected, ST117 and ST297 were the most common genotypes. These STs are recognized worldwide as pandemic lineages causing disease in humans and poultry. Virulence determinants associated with extraintestinal pathogenic E.coli showed variable phylogenetic distribution patterns. Isolates with reduced biocide susceptibility were rarely found on the tested farms. Nine isolates displayed elevated MICs and/or MBCs of formaldehyde, chlorocresol, peroxyacetic acid, or benzalkonium chloride. Antibiotic resistance to ampicillin, trimethoprim, and sulfamethoxazole was most prevalent. The majority of ESBL-/AmpC-producing isolates carried blaCTX-M (55%) or blaCMY-2 (24%) genes. Phenotypic biocide tolerance and antibiotic resistance were not interlinked. However, biocide and metal resistance determinants were found on mobile genetic elements together with antibiotic resistance genes raising concerns that biocides used in the food industry may lead to selection pressure for strains carrying acquired resistance determinants to different antimicrobials.


2007 ◽  
Vol 74 (3) ◽  
pp. 262-268 ◽  
Author(s):  
Ana Belén Flórez ◽  
Morten Danielsen ◽  
Jenni Korhonen ◽  
Joanna Zycka ◽  
Atte von Wright ◽  
...  

In order to establish cut-off values forLactococcus lactisto six antibiotics to distinguish susceptible and intrinsically resistant strains from those having acquired resistances, the minimum inhibitory concentration (MIC) of tetracycline, erythromycin, clindamycin, streptomycin, chloramphenicol and vancomycin was determined in 93 differentLc. lactisstrains using the Etest. These bacterial strains were originally isolated from dairy and animal sources in widely separated geographical locations. Cut-offs were defined on the basis of the distribution of the MICs frequency of the studied antibiotics, which in the absence of acquired determinants should approach to a normal statistical distribution. In general, the new cut-off values proposed in this study are higher than previously defined (European Commission, 2005. The EFSA Journal 223, 1–12). Based on these new values, all the strains tested were susceptible to erythromycin, chloramphenicol and vancomycin, and 79 susceptible to all six antibiotics. However, 11 strains (around 12%) were considered resistant to tetracycline (six of which had been identified after screening of a large collection of lactococci strains for tetracycline resistance) and five (5·4%) resistant to streptomycin. Of these, two fish isolates proved to be resistance to both tetracycline and streptomycin. From the tetracycline resistant strains,tet(M) and mosaictet(L/S) genes were amplified by PCR, demonstrating they harboured acquired antibiotic resistance determinants.


2019 ◽  
Vol 8 (6) ◽  
pp. 858 ◽  
Author(s):  
Vo Phuoc Tuan ◽  
Dou Narith ◽  
Evariste Tshibangu-Kabamba ◽  
Ho Dang Quy Dung ◽  
Pham Thanh Viet ◽  
...  

We evaluated the primary resistance of Helicobacter pylori (H. pylori) to routinely used antibiotics in Cambodia, an unexplored topic in the country, and assessed next-generation sequencing’s (NGS) potential to discover genetic resistance determinants. Fifty-five H. pylori strains were successfully cultured and screened for antibiotic susceptibility using agar dilution. Genotypic analysis was performed using NGS data with a CLC genomic workbench. PlasmidSeeker was used to detect plasmids. The correlation between resistant genotypes and phenotypes was evaluated statistically. Resistances to metronidazole (MTZ), levofloxacin (LVX), clarithromycin (CLR), and amoxicillin (AMX) were 96.4%, 67.3%, 25.5%, and 9.1%, respectively. No resistance to tetracycline (TET) was observed. Multi-drug resistance affected 76.4% of strains. No plasmids were found, but genetic determinants of resistance to CLR, LVX, and AMX were 23S rRNA (A2146G and A2147G), GyrA (N87K and D91Y/N/G), and pbp1 (P473L), respectively. No determinants were genetically linked to MTZ or TET resistance. There was high concordance between resistant genotypes and phenotypes for AMX, LVX, and CLR. We observed high antibiotic resistance rates of CLR, MTZ, and LVX, emphasizing the need for periodic evaluation and alternative therapies in Cambodia. NGS showed high capability for detecting genetic resistance determinants and potential for implementation in local treatment policies.


Biochemistry ◽  
2014 ◽  
Vol 53 (10) ◽  
pp. 1548-1550 ◽  
Author(s):  
Blas Blázquez ◽  
Leticia I. Llarrull ◽  
Juan R. Luque-Ortega ◽  
Carlos Alfonso ◽  
Bill Boggess ◽  
...  

2005 ◽  
Vol 49 (3) ◽  
pp. 973-980 ◽  
Author(s):  
Olivier Chesneau ◽  
Heidi Ligeret ◽  
Negin Hosan-Aghaie ◽  
Anne Morvan ◽  
Elie Dassa

ABSTRACT The Vga and Msr resistance determinants, encoded by mobile genetic elements in various staphylococcal strains, belong to a family of ATP-binding cassette (ABC) proteins whose functions and structures are ill defined. Their amino acid sequences are similar to those of proteins involved in the immunity of streptomycetes to the macrolide-lincosamide-streptogramin antibiotics that they produce. Sequence analysis of the genomes of the gram-positive bacteria with low G+C contents revealed that Lmo0919 from Listeria monocytogenes is more closely related to Vga variants than to Msr variants. In the present study we compared the antibiotic resistance profiles conferred by the Vga-like proteins in two staphylococcal hosts. It was shown that Vga(A), the Vga(A) variant [Vga(A)v], and Lmo0919 can confer resistance to lincosamides and streptogramin A compounds, while only Vga(B) is able to increase the level of resistance to pristinamycin, a mixture of streptogramin A and streptogramin B compounds. By using polyclonal antibodies, we found that the Vga(A) protein colocalized with the β subunit of the F1-F0 ATPase in the membrane fractions of staphylococcal cells. In order to identify functional units in these atypical ABC proteins, such as regions that might be involved in substrate specificity and/or membrane targeting, we analyzed the resistance phenotypes conferred by various plasmids carrying parts or modified versions of the vga(A) gene and we determined the subcellular localization of the gene products. Only polypeptides composed of two ABC domains were detected in the cell membranes. No region of drug specificity was identified. Resistance properties were dependent on the integrities of both Walker B motifs.


Sign in / Sign up

Export Citation Format

Share Document