scholarly journals Probabilistic forecasting of surgical case duration using machine learning: model development and validation

2020 ◽  
Vol 27 (12) ◽  
pp. 1885-1893
Author(s):  
York Jiao ◽  
Anshuman Sharma ◽  
Arbi Ben Abdallah ◽  
Thomas M Maddox ◽  
Thomas Kannampallil

Abstract Objective Accurate estimations of surgical case durations can lead to the cost-effective utilization of operating rooms. We developed a novel machine learning approach, using both structured and unstructured features as input, to predict a continuous probability distribution of surgical case durations. Materials and Methods The data set consisted of 53 783 surgical cases performed over 4 years at a tertiary-care pediatric hospital. Features extracted included categorical (American Society of Anesthesiologists [ASA] Physical Status, inpatient status, day of week), continuous (scheduled surgery duration, patient age), and unstructured text (procedure name, surgical diagnosis) variables. A mixture density network (MDN) was trained and compared to multiple tree-based methods and a Bayesian statistical method. A continuous ranked probability score (CRPS), a generalized extension of mean absolute error, was the primary performance measure. Pinball loss (PL) was calculated to assess accuracy at specific quantiles. Performance measures were additionally evaluated on common and rare surgical procedures. Permutation feature importance was measured for the best performing model. Results MDN had the best performance, with a CRPS of 18.1 minutes, compared to tree-based methods (19.5–22.1 minutes) and the Bayesian method (21.2 minutes). MDN had the best PL at all quantiles, and the best CRPS and PL for both common and rare procedures. Scheduled duration and procedure name were the most important features in the MDN. Conclusions Using natural language processing of surgical descriptors, we demonstrated the use of ML approaches to predict the continuous probability distribution of surgical case durations. The more discerning forecast of the ML-based MDN approach affords opportunities for guiding intelligent schedule design and day-of-surgery operational decisions.

2021 ◽  
Vol 11 (7) ◽  
pp. 3184
Author(s):  
Ismael Garrido-Muñoz  ◽  
Arturo Montejo-Ráez  ◽  
Fernando Martínez-Santiago  ◽  
L. Alfonso Ureña-López 

Deep neural networks are hegemonic approaches to many machine learning areas, including natural language processing (NLP). Thanks to the availability of large corpora collections and the capability of deep architectures to shape internal language mechanisms in self-supervised learning processes (also known as “pre-training”), versatile and performing models are released continuously for every new network design. These networks, somehow, learn a probability distribution of words and relations across the training collection used, inheriting the potential flaws, inconsistencies and biases contained in such a collection. As pre-trained models have been found to be very useful approaches to transfer learning, dealing with bias has become a relevant issue in this new scenario. We introduce bias in a formal way and explore how it has been treated in several networks, in terms of detection and correction. In addition, available resources are identified and a strategy to deal with bias in deep NLP is proposed.


10.2196/15347 ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. e15347
Author(s):  
Christopher Michael Homan ◽  
J Nicolas Schrading ◽  
Raymond W Ptucha ◽  
Catherine Cerulli ◽  
Cecilia Ovesdotter Alm

Background Social media is a rich, virtually untapped source of data on the dynamics of intimate partner violence, one that is both global in scale and intimate in detail. Objective The aim of this study is to use machine learning and other computational methods to analyze social media data for the reasons victims give for staying in or leaving abusive relationships. Methods Human annotation, part-of-speech tagging, and machine learning predictive models, including support vector machines, were used on a Twitter data set of 8767 #WhyIStayed and #WhyILeft tweets each. Results Our methods explored whether we can analyze micronarratives that include details about victims, abusers, and other stakeholders, the actions that constitute abuse, and how the stakeholders respond. Conclusions Our findings are consistent across various machine learning methods, which correspond to observations in the clinical literature, and affirm the relevance of natural language processing and machine learning for exploring issues of societal importance in social media.


2019 ◽  
Vol 46 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Mohammad Ehsan Basiri ◽  
Arman Kabiri

Opinion mining is a subfield of data mining and natural language processing that concerns with extracting users’ opinion and attitude towards products or services from their comments on the Web. Persian opinion mining, in contrast to its counterpart in English, is a totally new field of study and hence, it has not received the attention it deserves. Existing methods for opinion mining in the Persian language may be classified into machine learning– and lexicon-based approaches. These methods have been proposed and successfully used for polarity-detection problem. However, when they should be used for more complex tasks like rating prediction, their results are not desirable. In this study, first an exhaustive investigation of machine learning– and lexicon-based methods is performed. Then, a new hybrid method is proposed for rating-prediction problem in the Persian language. Finally, the effect of machine learning component, feature-selection method, normalisation method and combination level are investigated. The experimental results on a large data set containing 16,000 Persian customers’ review show that this proposed system achieves higher performance in comparison to Naïve Bayes algorithm and a pure lexicon-based method. Moreover, results demonstrate that this proposed method may also be successfully used for polarity detection.


2020 ◽  
Author(s):  
Ching-Chieh Huang ◽  
Jesyin Lai ◽  
Der-Yang Cho ◽  
Jiaxin Yu

Abstract Since the emergence of COVID-19, many hospitals have encountered challenges in performing efficient scheduling and good resource management to ensure the quality of healthcare provided to patients is not compromised. Operating room (OR) scheduling is one of the issues that has gained our attention because it is related to workflow efficiency and critical care of hospitals. Automatic scheduling and high predictive accuracy of surgical case duration have a critical role in improving OR utilization. To estimate surgical case duration, many hospitals rely on historic averages based on a specific surgeon or a specific procedure type obtained from electronic medical record (EMR) scheduling systems. However, the low predictive accuracy with EMR data leads to negative impacts on patients and hospitals, such as rescheduling of surgeries and cancellation. In this study, we aim to improve the prediction of surgical case duration with advanced machine learning (ML) algorithms. We obtained a large data set containing 170,748 surgical cases (from Jan 2017 to Dec 2019) from a hospital. The data covered a broad variety of details on patients, surgeries, specialties and surgical teams. In addition, a more recent data set with 8,672 cases (from Mar to Apr 2020) was available to be used for external evaluation. We computed historic averages from the EMR data for surgeon- or procedure-specific cases, and they were used as baseline models for comparison. Subsequently, we developed our models using linear regression, random forest and extreme gradient boosting (XGB) algorithms. All models were evaluated with R-square (R2), mean absolute error (MAE), and percentage overage (actual duration longer than prediction), underage (shorter than prediction) and within (within prediction). The XGB model was superior to the other models, achieving a higher R2 (85 %) and percentage within (48 %) as well as a lower MAE (30.2 min). The total prediction errors computed for all models showed that the XGB model had the lowest inaccurate percentage (23.7 %). Overall, this study applied ML techniques in the field of OR scheduling to reduce the medical and financial burden for healthcare management. The results revealed the importance of surgery and surgeon factors in surgical case duration prediction. This study also demonstrated the importance of performing an external evaluation to better validate the performance of ML models.


Author(s):  
Shaila S. G. ◽  
Sunanda Rajkumari ◽  
Vadivel Ayyasamy

Deep learning is playing vital role with greater success in various applications, such as digital image processing, human-computer interaction, computer vision and natural language processing, robotics, biological applications, etc. Unlike traditional machine learning approaches, deep learning has effective ability of learning and makes better use of data set for feature extraction. Because of its repetitive learning ability, deep learning has become more popular in the present-day research works.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Krishnadas Nanath ◽  
Supriya Kaitheri ◽  
Sonia Malik ◽  
Shahid Mustafa

Purpose The purpose of this paper is to examine the factors that significantly affect the prediction of fake news from the virality theory perspective. The paper looks at a mix of emotion-driven content, sentimental resonance, topic modeling and linguistic features of news articles to predict the probability of fake news. Design/methodology/approach A data set of over 12,000 articles was chosen to develop a model for fake news detection. Machine learning algorithms and natural language processing techniques were used to handle big data with efficiency. Lexicon-based emotion analysis provided eight kinds of emotions used in the article text. The cluster of topics was extracted using topic modeling (five topics), while sentiment analysis provided the resonance between the title and the text. Linguistic features were added to the coding outcomes to develop a logistic regression predictive model for testing the significant variables. Other machine learning algorithms were also executed and compared. Findings The results revealed that positive emotions in a text lower the probability of news being fake. It was also found that sensational content like illegal activities and crime-related content were associated with fake news. The news title and the text exhibiting similar sentiments were found to be having lower chances of being fake. News titles with more words and content with fewer words were found to impact fake news detection significantly. Practical implications Several systems and social media platforms today are trying to implement fake news detection methods to filter the content. This research provides exciting parameters from a viral theory perspective that could help develop automated fake news detectors. Originality/value While several studies have explored fake news detection, this study uses a new perspective on viral theory. It also introduces new parameters like sentimental resonance that could help predict fake news. This study deals with an extensive data set and uses advanced natural language processing to automate the coding techniques in developing the prediction model.


2021 ◽  
pp. 304-314
Author(s):  
Christen R. Elledge ◽  
Anna W. LaVigne ◽  
Jacob Fiksel ◽  
Jean L. Wright ◽  
Todd McNutt ◽  
...  

PURPOSE The Bone Metastases Ensemble Trees for Survival (BMETS) model uses a machine learning algorithm to estimate survival time following consultation for palliative radiation therapy for symptomatic bone metastases (SBM). BMETS was developed at a tertiary-care, academic medical center, but its validity and stability when applied to external data sets are unknown. PATIENTS AND METHODS Patients treated with palliative radiation therapy for SBM from May 2013 to May 2016 at two hospital-based community radiation oncology clinics were included, and medical records were retrospectively reviewed to collect model covariates and survival time. The Kaplan-Meier method was used to estimate overall survival from consultation to death or last follow-up. Model discrimination was estimated using time-dependent area under the curve (tAUC), which was calculated using survival predictions from BMETS based on the initial training data set. RESULTS A total of 216 sites of SBM were treated in 182 patients. Most common histologies were breast (27%), lung (23%), and prostate (23%). Compared with the BMETS training set, the external validation population was older (mean age, 67 v 62 years; P < .001), had more primary breast (27% v 19%; P = .03) and prostate cancer (20% v 12%; P = .01), and survived longer (median, 10.7 v 6.4 months). When the BMETS model was applied to the external data set, tAUC values at 3, 6, and 12 months were 0.82, 0.77, and 0.77, respectively. When refit with data from the combined training and external validation sets, tAUC remained > 0.79. CONCLUSION BMETS maintained high discriminative ability when applied to an external validation set and when refit with new data, supporting its generalizability, stability, and the feasibility of dynamic modeling.


2021 ◽  
Vol 13 (1) ◽  
pp. 11-19
Author(s):  
Mingxing Gong

Machine learning models have been widely used in numerous classification problems and performance measures play a critical role in machine learning model development, selection, and evaluation. This paper covers a comprehensive overview of performance measures in machine learning classification. Besides, we proposed a framework to construct a novel evaluation metric that is based on the voting results of three performance measures, each of which has strengths and limitations. The new metric can be proved better than accuracy in terms of consistency and discriminancy.


10.2196/16970 ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. e16970 ◽  
Author(s):  
Hayao Nakatani ◽  
Masatoshi Nakao ◽  
Hidefumi Uchiyama ◽  
Hiroyoshi Toyoshiba ◽  
Chikayuki Ochiai

Background Falls in hospitals are the most common risk factor that affects the safety of inpatients and can result in severe harm. Therefore, preventing falls is one of the most important areas of risk management for health care organizations. However, existing methods for predicting falls are laborious and costly. Objective The objective of this study is to verify whether hospital inpatient falls can be predicted through the analysis of a single input—unstructured nursing records obtained from Japanese electronic medical records (EMRs)—using a natural language processing (NLP) algorithm and machine learning. Methods The nursing records of 335 fallers and 408 nonfallers for a 12-month period were extracted from the EMRs of an acute care hospital and randomly divided into a learning data set and test data set. The former data set was subjected to NLP and machine learning to extract morphemes that contributed to separating fallers from nonfallers to construct a model for predicting falls. Then, the latter data set was used to determine the predictive value of the model using receiver operating characteristic (ROC) analysis. Results The prediction of falls using the test data set showed high accuracy, with an area under the ROC curve, sensitivity, specificity, and odds ratio of mean 0.834 (SD 0.005), mean 0.769 (SD 0.013), mean 0.785 (SD 0.020), and mean 12.27 (SD 1.11) for five independent experiments, respectively. The morphemes incorporated into the final model included many words closely related to known risk factors for falls, such as the use of psychotropic drugs, state of consciousness, and mobility, thereby demonstrating that an NLP algorithm combined with machine learning can effectively extract risk factors for falls from nursing records. Conclusions We successfully established that falls among hospital inpatients can be predicted by analyzing nursing records using an NLP algorithm and machine learning. Therefore, it may be possible to develop a fall risk monitoring system that analyzes nursing records daily and alerts health care professionals when the fall risk of an inpatient is increased.


Author(s):  
Ayushi Mitra

Sentiment analysis or Opinion Mining or Emotion Artificial Intelligence is an on-going field which refers to the use of Natural Language Processing, analysis of text and is utilized to extract quantify and is used to study the emotional states from a given piece of information or text data set. It is an area that continues to be currently in progress in field of text mining. Sentiment analysis is utilized in many corporations for review of products, comments from social media and from a small amount of it is utilized to check whether or not the text is positive, negative or neutral. Throughout this research work we wish to adopt rule- based approaches which defines a set of rules and inputs like Classic Natural Language Processing techniques, stemming, tokenization, a region of speech tagging and parsing of machine learning for sentiment analysis which is going to be implemented by most advanced python language.


Sign in / Sign up

Export Citation Format

Share Document