Rapid and Simple Coulometric Measurements of Peroxide Value in Edible Oils and Fats

1992 ◽  
Vol 75 (3) ◽  
pp. 507-510 ◽  
Author(s):  
Mitsuo Oishi ◽  
Kazuo Onishi ◽  
Motohiro Nishijima ◽  
Kazuya Nakagomi ◽  
Hiroyuki Nakazawa ◽  
...  

Abstract A rapid coulometric method was developed for the measurement of peroxide value In edible oils and fats. The sample size and reagents volumes In this method are considerably less than those in the American Oil Chemists' Society method. Iodine produced by the reaction of the Iodide Ion and peroxide In the sample Is electrochemlcally reduced at the carbon-felt electrode more rapidly than it is with lodometric titration. The present method Is successfully applied to the measurements of edible oils and fats, and the coulometric results obtained are consistent with those obtained by iodometry.

2020 ◽  
pp. 000370282097470
Author(s):  
Joshua M. Ottaway ◽  
J. Chance Carter ◽  
Kristl L Adams ◽  
Joseph Camancho ◽  
Barry Lavine ◽  
...  

The peroxide value (PV) of edible oils is a measure of the degree of oxidation, which directly relates to the freshness of the oil sample. Several studies previously reported in the literature have paired various spectroscopic techniques with multivariate analyses to rapidly determine PVs using field portable and process instrumentation; those efforts presented ‘best-case’ scenarios with oils from narrowly defined training and test sets. The purpose of this paper is to evaluate the use of near- and mid-infrared absorption and Raman scattering spectroscopies on oil samples from different oil classes, including seasonal and vendor variations, to determine which measurement technique, or combination thereof, is best for predicting PVs. Following PV assays of each oil class using an established titration-based method, global and global-subset calibration models were constructed from spectroscopic data collected on the 19 oil classes used in this study. Spectra from each optical technique were used to create partial least squares regression (PLSR) calibration models to predict the PV of unknown oil samples. A global PV model based on near-infrared (8 mm optical path length – OPL) oil measurements produced the lowest RMSEP (4.9), followed by 24 mm OPL near infrared (5.1), Raman (6.9) and 50 μm OPL mid-infrared (7.3). However, it was determined that the Raman RMSEP resulted from chance correlations. Global PV models based on low-level fusion of the NIR (8 and 24 mm OPL) data and all infrared data produced the same RMSEP of 5.1. Global subset models, based on any of the spectroscopies and olive oil training sets from any class (pure, extra light, extra virgin), all failed to extrapolate to the non-olive oils. However, the near-infrared global subset model built on extra virgin olive oil could extrapolate to test samples from other olive oil classes.


RSC Advances ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 4182-4190 ◽  
Author(s):  
Syed Kamran Sami ◽  
Jung Yong Seo ◽  
Suh-Eun Hyeon ◽  
Md. Selim Arif Shershah ◽  
Pil-Jin Yoo ◽  
...  

The rGO–SnO2 nano-composite with a significantly high-surface-area, greatly improves the electrosorption capacity and is proposed as a novel electrode for capacitive deionization applications.


2021 ◽  
Vol 880 ◽  
pp. 114907
Author(s):  
Minsoo Kim ◽  
Young Eun Song ◽  
Jiu-Qiang Xiong ◽  
Kyoung-Yeol Kim ◽  
Min Jang ◽  
...  

1991 ◽  
Vol 36 (2) ◽  
pp. 339-343 ◽  
Author(s):  
N. Vatistas ◽  
P.F. Marconi ◽  
M. Bartolozzi

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Pengjuan Liang ◽  
Chaoyin Chen ◽  
Shenglan Zhao ◽  
Feng Ge ◽  
Diqiu Liu ◽  
...  

Recent developments in Fourier transform infrared spectroscopy-partial least squares (FTIR-PLSs) extend the application of this strategy to the field of the edible oils and fats research. In this work, FT-IR spectroscopy was used as an effective analytical tool to determine the peroxide value of virgin walnut oil (VWO) samples undergone during heating. The spectra were recorded from a film of pure oil between two disks of KBr for each sample at frequency regions of 4000–650 cm−1. Changes in the values of the frequency of most of the bands of the spectra were observed and used to build the calibration model. PLS model correlates the actual and FT-IR estimated value of peroxide value with a correlation coefficient of 0.99, and the root mean square error of the calibration (RMSEC) value is 0.4838. The methodology has potential as a fast and accurate way for the quantification of peroxide value of the edible oils.


Sign in / Sign up

Export Citation Format

Share Document