scholarly journals Liquid Chromatography and Chemometric-Assisted Spectrophotometric Methods for the Analysis of Two Multicomponent Mixtures Containing Cough Suppressant Drugs

2005 ◽  
Vol 88 (4) ◽  
pp. 1069-1080 ◽  
Author(s):  
Alaa El-Gindy ◽  
Samy Emara ◽  
Mostafa K Mesbah ◽  
Ghada M Hadad

Abstract Three methods were applied for the analysis of 2 multicomponent mixtures containing dextromethorphan hydrobromide, phenylephrine hydrochloride, chlorpheniramine maleate, methylparaben, and propylparaben, together with either sodium benzoate (Mix 1) or ephedrine hydrochloride and benzoic acid (Mix 2). In the first method, liquid chromatography was used for their simultaneous determination using an ODS column with a mobile phase consisting of acetonitrile–phosphate buffer, pH 2.7 (40 + 60, v/v), containing 5mM heptanesulfonic acid sodium salt and ultraviolet (UV) detection at 214 nm. Also, 2 chemometric methods, principal component regression, and partial least squares were used. For both chemometric calibrations, a concentration set of the mixture consisting of each compound in each mixture was prepared in distilled water. The absorbance data in the UV spectra were measured for the 76 or 71 wavelength points in the spectral region 210–240 or 210–224 nm considering the intervals of Δλ = 0.4 or 0.2 nm for Mix 1 and Mix 2, respectively. The 2 chemometric methods did not require any separation step. These methods were successfully applied for the analysis of the 2 multicomponent combinations in synthetic mixtures and in commercial syrups, and the results were compared with each other.

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1272
Author(s):  
Seetharaman Rathinam ◽  
Lakshmi Karunanidhi Santhana

This work introduces three eco-friendly UV spectrophotometric methods for the simultaneous estimation of Paracetamol, Aceclofenac and Eperisone Hydrochloride in pharmaceutical tablet formulation. The procedures employed were simultaneous equation method and multivariate chemometric methods with phosphate buffer pH 7.80 as diluent. The simultaneous equation method encompasses absorbance measurement at three different wavelengths (λmax of the drugs). It exhibits linearity between 12–18 µg mL−1 for paracetamol, 3.69–5.53 µg mL−1 for Aceclofenac, and 2.76–4.15 µg mL−1 Eperisone hydrochloride. The results obtained for accuracy and precision by the simultaneous equation method were within the permissible limits. Principal component regression and partial least squares were the tools used for chemometric methods. The calibration set and prediction set were constructed, and the UV spectra were recorded in zero order mode, further subjected to chemometric analysis. The % recoveries obtained for Paracetamol, Aceclofenac, and Eperisone Hydrochloride by chemometric techniques showed good accuracy, and the results obtained for analytical figures of merit were acceptable. Statistical comparison of the assay results obtained for the proposed methods showed no significant difference found among the methods using one way analysis of variance. Greenness evaluation tools revealed the greenness profile of the proposed methods and found them to be ecofriendly. The described methods were appropriate for routine quality control laboratories, facilitating eco-friendly, fast, and cost effective determination of Paracetamol, Aceclofenac, and Eperisone Hydrochloride in Acemyoset P tablets.


2016 ◽  
Vol 99 (5) ◽  
pp. 1247-1251 ◽  
Author(s):  
Hamed M Elfatatry ◽  
Mokhtar M Mabrouk ◽  
Sherin F Hammad ◽  
Fotouh R Mansour ◽  
Amira H Kamal ◽  
...  

Abstract The present work describes new spectrophotometric methods for the simultaneous determination of phenylephrine hydrochloride and ketorolac tromethamine in their synthetic mixtures. The applied chemometric techniques are multivariate methods including classical least squares, principal component regression, and partial least squares. In these techniques, the concentration data matrix was prepared by using the synthetic mixtures containing these drugs dissolved in distilled water. The absorbance data matrix corresponding to the concentration data was obtained by measuring the absorbances at 16 wavelengths in the range 244–274 nm at 2 nm intervals in the zero-order spectra. The spectrophotometric procedures do not require any separation steps. The accuracy, precision, and linearity ranges of the methods have been determined, and analyzing synthetic mixtures containing the studied drugs has validated them. The developed methods were successfully applied to the synthetic mixtures and the results were compared to those obtained by a reported HPLC method.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (02) ◽  
pp. 45-50
Author(s):  
Umang Shah ◽  
Bhumika Desai ◽  
Vyomesh Nandrubarkar

Chemometry is the use of mathematical and statistical methods to improve the understanding of chemical information and to correlate quality parameters or physical properties to analytical instrument data. In the present work, two chemometric methods, named as principal component regression (PCR) and (PLS) based on the use of spectrophotometric data, were developed for simultaneous determination of clotrimazole (CLO) and beclomethasone dipropionate (BE C) in bulk and cream form. The absorbance of zero order UV spectra of CLO and BE C in the range of 80-400 μg/mL and 2-10 μg/mL, respectively were recorded in the wavelength range 230-272 nm at 3 nm wavelength intervals. Twenty-five (25) mixed solutions were prepared for the chemometric calibration as training set and sixteen varied solutions were prepared as a validation set. The suitability of the models was decided based on the RMSECV, RMSEP and PRESS values of calibration and validation data. The % recovery study of both the methods was compared, and it was found near each other. The assay of CLO and BE C for both the methods was found to be in the range of 99.78 to 101.20%. Hence, the proposed methods can be used for simultaneous analysis of the mixture of the drugs, without chemical pre-treatment, with good speed of analysis.


2006 ◽  
Vol 89 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Ugo R Cieri

Abstract A procedure is presented for the simultaneous determination of phenylephrine HCl (PE), chlorpheniramine maleate (CM), and methscopolamine nitrate in commercial tablets or capsules by liquid chromatography (LC) with 2 UV absorbance detectors in series. Reference and sample solutions are prepared in methanol. LC separations are performed on a 7.5 cm Novapak silica column. The mobile phase is prepared by mixing 930 mL methanol with 70 mL of a 0.5% aqueous solution of 1-pentanesulfonic acid, sodium salt. The injection volume is 20 L; the flow rate is approximately 1 mL/min. Retention times are approximately 1.5 min for PE, 3 min for CM, and 6 min for methscopolamine nitrate. One detector determines the first 2 compounds at 265 nm, but the third compound does not produce a detectable peak. The other detector set at 210 nm generates peaks for all 3 compounds, but only methscopolamine is within the recorder range; the other 2 compounds are exceedingly off scale. If it is not feasible or desirable to arrange 2 UV absorbance detectors in series, separate determinations can be made, one for the first 2 compounds and the other for the third component of the mixture. Two commercial samples of tablets and 2 commercial samples of capsules were analyzed by the proposed method. Recovery studies were also conducted with amounts of the 3 compounds ranging from 80 to 120% of the quantities present in the sample solutions.


2018 ◽  
Vol 101 (3) ◽  
pp. 714-722 ◽  
Author(s):  
Christine K Nessim ◽  
Adel M Michael ◽  
Yasmin M Fayez ◽  
Hayam M Lotfy

Abstract Two simple and accurate chemometric-assisted spectrophotometric models were developed and validated for the simultaneous determination of chlordiazepoxide (CDZ) and clidinium bromide (CDB) in the presence of an alkali-induced degradation product of CDB in their pure and pharmaceutical formulation. Resolution was accomplished by using two multivariate calibration models, including principal component regression (PCR) and partial least-squares (PLS), applied to the UV spectra of the mixtures. Great improvement in the predictive abilities of these multivariate calibrations was observed. A calibration set was constructed and the best model used to predict the concentrations of the studied drugs. CDZ and CDB were analyzed with mean accuracies of 99.84 ± 1.41 and 99.81 ± 0.89% for CDZ and 99.56 ± 1.43 and 99.44 ± 1.41% for CDB using PLS and PCR models, respectively. The proposed models were validated and applied for the analysis of a commercial formulation and laboratory-prepared mixtures. The developed models were statistically compared with those of the official and reported methods with no significant differences observed. The models can be used for the routine analysis of both drugs in QC laboratories.


2021 ◽  
Vol 19 (1) ◽  
pp. 205-213
Author(s):  
Hany W. Darwish ◽  
Abdulrahman A. Al Majed ◽  
Ibrahim A. Al-Suwaidan ◽  
Ibrahim A. Darwish ◽  
Ahmed H. Bakheit ◽  
...  

Abstract Five various chemometric methods were established for the simultaneous determination of azilsartan medoxomil (AZM) and chlorthalidone in the presence of azilsartan which is the core impurity of AZM. The full spectrum-based chemometric techniques, namely partial least squares (PLS), principal component regression, and artificial neural networks (ANN), were among the applied methods. Besides, the ANN and PLS were the other two methods that were extended by genetic algorithm procedure (GA-PLS and GA-ANN) as a wavelength selection procedure. The models were developed by applying a multilevel multifactor experimental design. The predictive power of the suggested models was evaluated through a validation set containing nine mixtures with different ratios of the three analytes. For the analysis of Edarbyclor® tablets, all the proposed procedures were applied and the best results were achieved in the case of ANN, GA-ANN, and GA-PLS methods. The findings of the three methods were revealed as the quantitative tool for the analysis of the three components without any intrusion from the co-formulated excipient and without prior separation procedures. Moreover, the GA impact on strengthening the predictive power of ANN- and PLS-based models was also highlighted.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Guzide Pekcan Ertokus

The spectrophotometric-chemometric analysis of levodopa and carbidopa that are used for Parkinson’s disease was analyzed without any prior reservation. Parkinson’s drugs in the urine sample of a healthy person (never used drugs in his life) were analyzed at the same time spectrophotometrically. The chemometric methods used were partial least squares regression (PLS) and principal component regression (PCR). PLS and PCR were successfully applied as chemometric determination of levodopa and carbidopa in human urine samples. A concentration set including binary mixtures of levodopa and carbidopa in 15 different combinations was randomly prepared in acetate buffer (pH 3.5).). UV spectrophotometry is a relatively inexpensive, reliable, and less time-consuming method. Minitab program was used for absorbance and concentration values. The normalization values for each active substance were good (r2>0.9997). Additionally, experimental data were validated statistically. The results of the analyses of the results revealed high recoveries and low standard deviations. Hence, the results encouraged us to apply the method to drug analysis. The proposed methods are highly sensitive and precise, and therefore they were implemented for the determination of the active substances in the urine sample of a healthy person in triumph.


2007 ◽  
Vol 90 (4) ◽  
pp. 957-970 ◽  
Author(s):  
Ghada M Hadad ◽  
Alaa El-Gindy ◽  
Waleed M M Mahmoud

Abstract Multivariate spectrophotometric calibration and liquid chromatography (LC) methods were used for the simultaneous determination of the active ingredients in 2 multicomponent mixtures containing chlorpheniramine maleate and phenylpropanolamine hydrochloride with ibuprofen and caffeine (mixture 1) or with propyphenazone (mixture 2). For the multivariate spectrophotometric calibration methods, principal component regression (PCR) and partial least squares (PLS-1), a calibration set of the mixtures consisting of the components of each mixture was prepared in distilled water. A leave-1-out cross-validation procedure was used to find the optimum numbers of latent variables. Analytical parameters such as sensitivity, selectivity, analytical sensitivity, limit of quantitation, and limit of detection were determined for both PLS-1 and PCR. The LC method depends on the use of a cyanopropyl column with the mobile phase acetonitrile-12 mM ammonium acetate, pH 5.0 (25 + 75, v/v), for mixture 1 or acetonitrile10 mM potassium dihydrogen phosphate, pH 4.7 (45 + 55, v/v), for mixture 2; the UV detector was set at 212 nm. In spite of the presence of a high degree of spectral overlap of these components, they were rapidly and simultaneously determined with high accuracy and precision, with no interference from the matrix excipients. The proposed methods were successfully applied to the analysis of pharmaceutical formulations and laboratory-prepared mixtures containing the 2 multicomponent combinations.


2011 ◽  
Vol 94 (1) ◽  
pp. 128-135 ◽  
Author(s):  
Elif Karacan ◽  
Mehmet Gokhan Çaġlayan ◽  
İsmail Murat Palabiyik ◽  
Feyyaz Onur

Abstract A new RP-LC method and two new spectrophotometric methods, principal component regression (PCR) and first derivative spectrophotometry, are proposed for simultaneous determination of diflucortolone valerate (DIF) and isoconazole nitrate (ISO) in cream formulations. An isocratic system consisting of an ACE® C18 column and a mobile phase composed of methanol–water (95+5, v/v) was used for the optimal chromatographic separation. In PCR, the concentration data matrix was prepared by using synthetic mixtures containing these drugs in methanol–water (3+1, v/v). The absorbance data matrix corresponding to the concentration data matrix was obtained by measuring the absorbances at 29 wavelengths in the range of 242–298 nm for DIF and ISO in the zero-order spectra of their combinations. In first derivative spectrophotometry, dA/dλ values were measured at 247.8 nm for DIF and at 240.2 nm for ISO in first derivative spectra of the solution of DIF and ISO in methanol–water (3+1, v/v). The linear ranges were 4.00–48.0 μg/mL for DIF and 50.0–400 μg/mL for ISO in the LC method, and 2.40–40.0 μg/mL for DIF and 60.0–260 μg/mL for ISO in the PCR and first derivative spectrophotometric methods. These methods were validated by analyzing synthetic mixtures. These three methods were successfully applied to two pharmaceutical cream preparations.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Edwin García-Miguel ◽  
Ofelia Gabriela Meza-Márquez ◽  
Guillermo Osorio-Revilla ◽  
Darío Iker Téllez-Medina ◽  
Cristian Jiménez-Martínez ◽  
...  

Chemometric methods using mid-FTIR spectroscopy were developed in order to reduce the time of study of melamine and cyanuric acid in infant formulas. Chemometric models were constructed using the algorithms Partial Least Squares (PLS1, PLS2) and Principal Component Regression (PCR) in order to correlate the IR signal with the levels of melamine or cyanuric acid in the infant formula samples. Results showed that the best correlations were obtained using PLS1 (R2: 0.9998, SEC: 0.0793, and SEP: 0.5545 for melamine and R2: 0.9997, SEC: 0.1074, and SEP: 0.5021 for cyanuric acid). Also, the SIMCA model was studied to distinguish between adulterated formulas and nonadulterated samples, giving optimum discrimination and good interclass distances between samples. Results showed that chemometric models demonstrated a good predictive ability of melamine and cyanuric acid concentrations in infant formulas, showing that this is a rapid and accurate technique to be used in the identification and quantification of these adulterants in infant formulas.


Sign in / Sign up

Export Citation Format

Share Document