scholarly journals An evaluation of the economic effects of bovine respiratory disease on animal performance, carcass traits, and economic outcomes in feedlot cattle defined using four BRD diagnosis methods

2020 ◽  
Vol 98 (2) ◽  
Author(s):  
Claudia Blakebrough-Hall ◽  
Joe P McMeniman ◽  
Luciano A González

Abstract Bovine respiratory disease (BRD) causes significant economic losses to the feedlot industry due to decreased production and increased costs associated with treatment. This study aimed to assess the impacts of BRD on performance, carcass traits, and economic outcomes defined using four BRD diagnosis methods: number of BRD treatments an animal received, pleural lesions at slaughter, lung lesions at slaughter, and clinical BRD status defined using both treatment records and lung and pleural lesions. Crossbred steers (n = 898), with an initial body weight of 432 kg (± SD 51), were followed from feedlot entry to slaughter. Veterinary treatment records were collected and lungs scored at slaughter for lesions indicative of BRD. There was an 18% morbidity rate and a 2.1% BRD mortality rate, with an average net loss of AUD$1,647.53 per BRD mortality. Animals treated ≥3 times for BRD had 39.6 kg lighter carcasses at slaughter and returned an average of AUD$384.97 less compared to animals never treated for BRD (P < 0.001). Animals with severe lung lesions at slaughter grew 0.3 kg/d less, had 14.3 kg lighter carcasses at slaughter, and returned AUD$91.50 less than animals with no lung lesions (P < 0.001). Animals with subclinical and clinical BRD had 16.0 kg and 24.1 kg lighter carcasses, respectively, and returned AUD$67.10 and AUD$213.90 less at slaughter, respectively, compared to healthy animals that were never treated with no lesions (P < 0.001). The severity of BRD based on the number of treatments an animal received and the severity of lung and pleural lesions reduced animal performance, carcass weight and quality, and economic returns. Subclinical BRD reduced animal performance and economic returns compared to healthy animals; however, subclinical animals still had greater performance than animals with clinical BRD. This information can be used to plan for strategic investments aimed at reducing the impacts of BRD in feedlot cattle such as improved detection methods for subclinical animals with lesions at slaughter and BRD treatment protocols.

Author(s):  
Emilie A-L Flattot ◽  
Tony R Batterham ◽  
Edouard Timsit ◽  
Brad J White ◽  
Joe P McMeniman ◽  
...  

Abstract Bovine respiratory disease (BRD) is the most important and costly health issue of the feedlot industry worldwide. Remote monitoring of reticulorumen temperature has been suggested as a potential tool to improve the diagnostic accuracy of BRD. The present study aimed to evaluate 1) the difference and degree of reticulorumen hyperthermia episodes between healthy and subclinical BRD feedlot steers, 2) determine the correlation between reticulorumen hyperthermia and lung pathology, performance, and carcass traits. Mixed-breed feedlot steers (n= 148) with a mean arrival weight of 321 ± 3.34 kg were administered a reticulorumen bolus at feedlot entry and monitored for visual and audible signs of BRD until slaughter when lungs were examined and scored for lesions indicative of BRD. Post-slaughter animals with no record of BRD treatment were assigned to one of three case definitions. Healthy steers had no visual or audible signs of BRD (i.e., CIS=1), and total lung consolidation score < 5% or pleurisy score < 3 at slaughter. Subclinical BRD cases had a CIS of 1, and a lung consolidation score ≥ 5% or a pleurisy score of 3 at slaughter. Mild CIS cases had at least one CIS of 2, and a lung consolidation score < 5% and a pleurisy score < 3 at slaughter. Subclinical BRD and mild CIS cases had longer total duration of reticulorumen hyperthermia, more episodes and longer average episode duration above 40.0°C compared to healthy steers (P < 0.05). A moderate positive correlation was found between lung consolidation and total duration (r = 0.27, P < 0.001), episode duration (r = 0.29, P < 0.001) and number of episodes (r = 0.20, P < 0.05). Pleurisy score was also found to be moderately and positively correlated with total duration (r = 0.23, P < 0.01), episode duration (r = 0.37, P < 0.001) and number of episodes (r = 0.26, P < 0.01). Moderate negative correlations were found between reticulorumen hyperthermia and carcass traits including hot standard carcass weight (HSCW) (- 0.22 ≤ r ≤ - 0.23, P < 0.05) and P8-fat depth (- 0.18 ≤ r ≤ - 0.32, P < 0.05). Subclinical BRD reduced carcass weight by 22 kg and average daily gain (ADG) by 0.44 kg/day compared to healthy steers (P < 0.05), but mild CIS cases had no effect on performance (P > 0.05). The reticulorumen bolus technology appears promising for detection of subclinical BRD cases in feedlot cattle as defined by lung pathology at slaughter.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
C. Blakebrough-Hall ◽  
A. Dona ◽  
M. J. D’occhio ◽  
J. McMeniman ◽  
L. A González

AbstractCurrent diagnosis methods for Bovine Respiratory Disease (BRD) in feedlots have a low diagnostic accuracy. The current study aimed to search for blood biomarkers of BRD using 1H NMR metabolomics and determine their accuracy in diagnosing BRD. Animals with visual signs of BRD (n = 149) and visually healthy (non-BRD; n = 148) were sampled for blood metabolomics analysis. Lung lesions indicative of BRD were scored at slaughter. Non-targeted 1H NMR metabolomics was used to develop predictive algorithms for disease classification using classification and regression trees. In the absence of a gold standard for BRD diagnosis, six reference diagnosis methods were used to define an animal as BRD or non-BRD. Sensitivity (Se) and specificity (Sp) were used to estimate diagnostic accuracy (Acc). Blood metabolomics demonstrated a high accuracy at diagnosing BRD when using visual signs of BRD (Acc = 0.85), however was less accurate at diagnosing BRD using rectal temperature (Acc = 0.65), lung auscultation score (Acc = 0.61) and lung lesions at slaughter as reference diagnosis methods (Acc = 0.71). Phenylalanine, lactate, hydroxybutyrate, tyrosine, citrate and leucine were identified as metabolites of importance in classifying animals as BRD or non-BRD. The blood metabolome classified BRD and non-BRD animals with high accuracy and shows potential for use as a BRD diagnosis tool.


2017 ◽  
Vol 95 (6) ◽  
pp. 2726 ◽  
Author(s):  
J. N. Kiser ◽  
T. E. Lawrence ◽  
M. Neupane ◽  
C. M. Seabury ◽  
J. F. Taylor ◽  
...  

2019 ◽  
Vol 35 (3) ◽  
pp. 209-217
Author(s):  
Vladimir Kurcubic ◽  
Radojica Djokovic ◽  
Zoran Ilic ◽  
Nikola Vaskovic ◽  
Milos Petrovic

Bovine respiratory disease complex (BRDC) is the biggest health problem of the cattle industry globally due to the high prevalence and economic consequences which arise due to numerous reasons. Huge economic losses are most often attributed to high morbidity and mortality, reduction of Average Daily Gain (ADG) and food utilization, weight loss, lower quality of carcasses and comprehensive measures of prophylaxis and therapy. BRDC commonly observed throughout the feedlot phase due to the stress factors. Predisposing factors divided didactic on environmental (inclement weather conditions, inadequate humidity and dust), host factors (age, sex, race, genetics, immune status) and stressful management practices (transportation, nutritional stress, metabolic disease, high density of animals, handling, castration, dehorning). In complex etiopathogenesis, in addition to the aforementioned predisposing factors, numerous viral and bacterial agents are involved. Gross lung lesions are most commonly observed in cattle slaughter or autopsies (visible to the naked eye) occur as a result of pneumonia. It is the result of an infection by the bovine respiratory syncytial virus (BRSV), parainfluenza virus type 3 (PI3V), bovine herpes virus type 1 (BoHV1) and bovine viral diarrhea virus (BVDV) alone or in combination with one another, as well the common bacterial pathogens Mannheimia haemolytica, Pasteurella multocida, Histophilus somni and Micrococcus spp. Numerous studies have pointed to the detrimental effects on performance and carcass characteristics.


2010 ◽  
Vol 88 (4) ◽  
pp. 1220-1228 ◽  
Author(s):  
M. J. Schneider ◽  
R. G. Tait ◽  
M. V. Ruble ◽  
W. D. Busby ◽  
J. M. Reecy

ABSTRACT The primary objective of this study was to estimate variance components and heritability of bovine respiratory disease (BRD) incidence in beef calves before weaning and during the finishing phase. The second objective was to investigate the impact of BRD incidence and treatment frequency on performance and carcass traits. Bovine respiratory disease is the biggest and most costly health challenge facing the cattle industry. The 2 populations used consisted of 1,519 preweaned calves and 3,277 head of feedlot cattle. The incidence rate of BRD in preweaned calves was 11.39%, and among treated cattle, 82.1% were treated once, 13.9% were treated twice, and 4.0% were treated 3 times or more. The incidence of BRD (P = 0.35) and the number of treatments (P = 0.77) had no significant effect on weaning BW. Heritability estimates of the entire preweaned population for BRD resistance and number of treatments were 0.11 ± 0.06 and 0.08 ± 0.05, respectively. The genetic correlation estimates for BRD incidence with weaning BW and birth BW were low (−0.02 ± 0.32 and 0.07 ± 0.27, respectively). The same estimate for the number of BRD treatments with weaning BW and birth BW was 0.25 ± 0.35 and 0.30 ± 0.27, respectively. The observed BRD incidence rate for feedlot cattle was observed at 9.43%. Incidence of BRD significantly (P < 0.01) decreased overall and acclimation ADG by 0.06 ± 0.01 kg/d and 0.28 ± 0.03 kg/d, respectively. Carcass traits were also significantly (P < 0.05) affected by BRD incidence; untreated cattle had a 9.1 ± 1.7-kg heavier HCW. Results were similar in the analysis of treatment frequency. The heritability estimate of BRD incidence and the number of treatments were 0.07 ± 0.04 and 0.02 ± 0.03, respectively. Estimates of genetic correlations of BRD incidence with production traits were −0.63 ± 0.22 for acclimation ADG, −0.04 ± 0.23 for on-test ADG, −0.31 ± 0.21 for overall ADG, −0.39 ± 0.21 for final BW, −0.22 ± 0.22 for HCW, −0.03 ± 0.22 for LM area, 0.24 ± 0.25 for fat, and −0.43 ± 0.20 for marbling score. Similar results for the number of treatments and production traits were −1.00 ± 0.68 for acclimation ADG, −0.04 ± 0.39 for on-test ADG, −0.47 ± 0.41 for overall ADG, −0.66 ± 0.40 for final BW, −0.58 ± 0.45 for HCW, −0.12 ± 0.38 for LM area, 0.42 ± 0.50 for fat, and −0.32 ± 0.37 for marbling score. Because of the high economic cost associated with BRD incidence, even these modest estimates for heritability of BRD resistance should be considered for incorporation into beef cattle breeding programs.


Sign in / Sign up

Export Citation Format

Share Document