scholarly journals Chemical composition and in vitro fermentation characteristics of ancient grains using canine fecal inoculum

2020 ◽  
Vol 98 (11) ◽  
Author(s):  
Zachary T Traughber ◽  
Fei He ◽  
Jolene M Hoke ◽  
Gary M Davenport ◽  
Maria R C de Godoy

Abstract Human interest in ancient grains replacing traditional carbohydrate sources has reached the pet food market; however, chemical composition of these grains and their digestive properties in the canine model, specifically the fermentative characteristics, have not been established. Five ancient grain varieties were analyzed: amaranth (AM), white proso millet (WPM), oat groats (OG), quinoa (QU), and red millet (RM). Cellulose (CEL) was used as a negative control, and beet pulp (BP) was used as a positive control. Substrates were analyzed for macronutrient composition as well as free and hydrolyzed sugar profiles in addition to their in vitro fermentative characteristics. Substrates were allocated into 2 sets to allow for quantification of pH, short-chain fatty acids, and branched-chain fatty acids, as well as gas volume and composition. Samples were digested for 6 and 18 h with pepsin and pancreatin, respectively, prior to inoculation with fecal bacteria for 0, 3, 6, 9, or 12 h. Detectable levels of cereal β-glucans were observed solely in OG (3.5%), with all other substrate containing <0.35% cereal β-glucans. All test substrates had fairly similar macronutrient and starch profiles with the exception of RM that contained the highest resistant starch content (2.4%), with all other test substrates containing <0.5% resistant starch. However, the analyzed pseudocereals, AM and QU, had the highest concentrations of free glucose while the minor cereal grains, WPM, OG, and RM, contained the highest concentrations of hydrolyzed glucose. All test substrates had propionate production values similar or greater than BP after 3, 6, 9, and 12 h of fermentation, and similar or greater butyrate production values than BP after 6, 9, and 12 h. All substrates had greater (P < 0.05) changes in pH than CEL after 6, 9, and 12 h, with AM, WPM, OG, and RM having greater (P < 0.05) changes in pH than BP after 9 and 12 h. These data suggest select ancient grains have similar fermentation characteristics as BP, a moderately fermentable fiber considered the gold standard in terms of fiber sources in the pet food market today, and that OG and AM may be more fermentable during longer fermentation periods.

2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Zachary T Traughber ◽  
Fei He ◽  
Jolene M Hoke ◽  
Gary M Davenport ◽  
Maria R C de Godoy

Abstract Legumes are a popular grain-free alternative carbohydrate source in canine diets, however, information on their fermentative characteristics have not been established. Thus, the objectives of the present study were to 1) quantify the chemical compositions and 2) fermentative profile of select legumes using canine fecal inoculum. Five legume varieties, whole yellow peas (WYP), green lentils (GL), black bean grits (BBG), navy bean powder (NBP), and garbanzo beans, were analyzed and compared to a positive control, beet pulp (BP). Substrates were analyzed for gross energy (GE), dry and organic matter, crude protein (CP), acid hydrolyzed fat, and total dietary fiber (TDF) fractions, beta-glucans, starch-free, and hydrolyzed sugars, as well as fermentative characteristics: pH, short-chain fatty acids (SCFA), branched-chain fatty acids (BCFA), total gas, hydrogen, and methane. Substrates then underwent a two-stage in vitro digestion and subsequent fermentation using canine fecal inoculum for 0, 3, 6, 9, and 12 h. All test substrates contained approximately 8% to 9% moisture and 4.5 kcal/g GE. The highest CP content was observed in GL (27%). Analyzed TDF content of test substrates was greatest for WYP (32%) and GL (36%). Total starch content was greatest for GL (58%) and WYP (56%). Sucrose and stachyose were the most predominant free sugars and glucose was the most predominant hydrolyzed sugar among test substrates. After 3 and 6 h of fermentation, a net negative change in pH was observed among most substrates with a net negative change in all substrates after 9 and 12 h. Values for SCFA did not differ among substrates after 3 or 6 h of fermentation with BP and WYP among the greatest acetate (1,656 and 1,765 umol/g, respectively) and propionate production values (157.7 and 126.1, respectively) after 9 h. All substrates produced greater total gas volumes than WYP after 3 h, with no differences observed after any other time points. However, BP hydrogen production values were greater after 9 and 12 h (P < 0.0001; 726,042 and 394,675 ng/g, respectively) with greater methane production values after 12 h (P < 0.0001; 54,291 ng/g) than all test substrates. These data suggest that legumes offer a diverse macronutrient profile and appear to be a source of slowly fermentable fiber, which may have beneficial implications on the ratios of saccharolytic to proteolytic fermentation toward the distal colon.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 177-177
Author(s):  
Gabriela E Martinez Padilla ◽  
Rajesh Jha ◽  
Vivek Fellner ◽  
Eric van Heugten

Abstract This study evaluated short-chain fatty acid (SCFA) production from purified fiber sources when fermented in vitro using pig cecal contents as an inoculum. Fiber sources of interest were inulin from chicory root (native and long-chain inulin with 90 and 98% fiber, respectively), pectin from citrus peel (high methoxyl pectin), resistant starch (native starch), potato starch (commercial grade), and β-glucan (β-1,3;β-1,6 yeast-derived). Cellulose and cornstarch were used as indigestible and highly digestible carbohydrates, respectively. Triplicate samples of substrates (2 g) were subjected to enzymatic hydrolysis with pepsin and pancreatin for 6 h. Subsequently, hydrolyzed residues (200 mg) were incubated under anaerobic conditions at 39°C with 30 mL solution of cecal inoculum collected from 3 sows fed a standard commercial diet and buffered mineral solution. After 48 h of incubation, solutions from fermented samples were analyzed for pH, SCFA, and branched-chain fatty acids (BCFA) using gas-liquid chromatography. Enzymatic hydrolysis had no effect on digestion of β-glucan, but total SCFA concentration after fermentation was highest (26.13 mmol/g) followed by resistant starch (22.61 mmol/g) and potato starch (22.20 mmol/g) and was lowest for cellulose (13.91 mmol/g). In contrast, native inulin was highly digested during enzymatic hydrolysis, resulting in the lowest substrate available for fermentation (11.84% DM) and the highest pH (5.98). Enzymatic hydrolysis and fermentation of resistant starch increased (P< 0.001) concentrations of acetate (0.60 mg/g), whereas potato starch and β-glucan yielded more butyrate (0.60 and 0.54 mg/g respectively), and β-glucan resulted in greater (P< 0.001) propionate concentrations (0.69 mg/g). Pectin resulted in the highest fermentation (82.38% DM disappearance) and the lowest pH (4.03) compared to the other fiber sources (P< 0.001) and yielded the lowest BCFA concentration (1.89 mM, P< 0.001). Results suggest that fermentation of resistant starch, potato starch, and β-glucan produced higher SCFA concentrations, while pectin resulted in a decreased pH of fermentation solution.


2020 ◽  
Vol 21 (2) ◽  
pp. 445 ◽  
Author(s):  
Sini Kang ◽  
Hyun Ju You ◽  
Yeong-Geun Lee ◽  
Yunju Jeong ◽  
Tony V. Johnston ◽  
...  

Short-chain fatty acids (SCFAs), especially butyrate, produced in mammalian intestinal tracts via fermentation of dietary fiber, are known biofunctional compounds in humans. However, the variability of fermentable fiber consumed on a daily basis and the diversity of gut microbiota within individuals often limits the production of short-chain fatty acids in the human gut. In this study, we attempted to enhance the butyrate levels in human fecal samples by utilizing butyl-fructooligosaccharides (B-FOS) as a novel prebiotic substance. Two major types of B-FOS (GF3-1B and GF3-2B), composed of short-chain fructooligosaccharides (FOS) bound to one or two butyric groups by ester bonds, were synthesized. Qualitative analysis of these B-FOS using Fourier transform infrared (FT-IR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), nuclear magnetic resonance (NMR) and low-resolution fast-atom bombardment mass spectra (LR-FAB-MS), showed that the chemical structure of GF3-1B and GF3-2B were [O-(1-buty-β-D-fru-(2→1)-O-β-D-fru-(2→1)-O-β-D-fru-O-α-D-glu] and [O-(1-buty)-β-D-fru-(2→1)-O-β-D-fru-(2→1)-O-(4-buty)-β-D-fru-O-α-D-glu], respectively. The ratio of these two compounds was approximately 5:3. To verify their biofunctionality as prebiotic oligosaccharides, proliferation and survival patterns of human fecal microbiota were examined in vitro via 16S rRNA metagenomics analysis compared to a positive FOS control and a negative control without a carbon source. B-FOS treatment showed different enrichment patterns on the fecal microbiota community during fermentation, and especially stimulated the growth of major butyrate producing bacterial consortia and modulated specific butyrate producing pathways with significantly enhanced butyrate levels. Furthermore, the relative abundance of Fusobacterium and ammonia production with related metabolic genes were greatly reduced with B-FOS and FOS treatment compared to the control group. These findings indicate that B-FOS differentially promotes butyrate production through the enhancement of butyrate-producing bacteria and their metabolic genes, and can be applied as a novel prebiotic compound in vivo.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 320-321
Author(s):  
Zac Traughber ◽  
Fei He ◽  
Jolene Hoke ◽  
Gary Davenport ◽  
Maria R C de Godoy

Abstract Legumes are a popular grain-free alternative carbohydrate source in canine diets; however, information on fermentative characteristics of select legumes have not been established. Thus, the objectives of the present study were to quantify the chemical compositions and fermentative profile of select legumes using canine fecal inoculum. Five legume varieties, whole yellow peas (WYP), green lentils (GL), black bean grits, navy bean powder, and garbanzo beans, were analyzed and compared to a control, beet pulp (BP). Substrates were analyzed for gross energy (GE), dry and organic matter, crude protein (CP), acid hydrolyzed fat, and total dietary fiber fractions, beta-glucans, starch, free and hydrolyzed sugars, and fermentative characteristics: pH, short-chain fatty acids (SCFA), branched-chain fatty acids (BCFA), total gas, hydrogen, and methane. Substrates underwent a two-stage in vitro digestion and subsequent fermentation using canine fecal inoculum for 0, 3, 6, 9, and 12 h. Statistical significance was set at P ≤ 0.05. All test substrates contained approximately 8–9% moisture and 4.5 kcal/g GE. Crude protein concentrations of pulses ranged from 21–27%. Insoluble fiber values varied from 17–33%, with soluble fiber values ranging from 0–8%. Total starch content was greatest for GL (58%) and WYP (56%). Sucrose and stachyose were the most predominant free sugars and glucose was the most predominant hydrolyzed sugar among test substrates. Production of SCFA did not differ among substrates after 3 or 6 h of fermentation. BP and WYP had the greatest acetate (1,656 and 1,765 umol/g, respectively) and propionate production values (157.7 and 126.1 umol/g, respectively) after 9 h of in vitro fermentation. Pulses are good sources of dietary protein; however, they are also fiber-rich ingredients that appear to be slowly fermentable in vitro, which may have beneficial implications on the ratios of saccharolytic to proteolytic fermentation towards the distal colon in vivo.


animal ◽  
2013 ◽  
Vol 7 (9) ◽  
pp. 1446-1453 ◽  
Author(s):  
G. Giuberti ◽  
A. Gallo ◽  
M. Moschini ◽  
F. Masoero

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

Sign in / Sign up

Export Citation Format

Share Document