scholarly journals Regional Survey of Diamondback Moth (Lepidoptera: Plutellidae) Response to Maximum Dosages of Insecticides in Georgia and Florida

2020 ◽  
Vol 113 (5) ◽  
pp. 2458-2464
Author(s):  
David Riley ◽  
Hugh Smith ◽  
John Bennett ◽  
Philip Torrance ◽  
Evan Huffman ◽  
...  

Abstract We conducted maximum dose bioassays of insecticide for the control of diamondback moth (DBM), Plutella xylostella (Linnaeus), in cole crops, from 2016 to 2019 at several commercial locations in Georgia and Florida. The nominal maximum dose was defined as the highest labeled rate of an insecticide at the beginning of the survey in the equivalent of 935 liters/ha dilution. The results indicated low insecticide efficacy for high labeled rates of the following insecticides by common name (Insecticide Resistance Action Committee group number in parentheses). Our 4-yr survey identified very low levels of DBM larval control (<47%) by lambda-cyhalothrin (3), methoxyfenozide (18), pyriproxyfen (7C), novaluron (15), bifenthrin (3), chlorantraniliprole (28), indoxacarb (22A), and methomyl (1A). The best products for DBM control (>74%) listed in decreasing average levels of efficacy were naled (1B), cyclaniliprole (28), tolfenpyrad (21A), emamectin benzoate (6), and cyantraniliprole (28). Intermediate levels of control (61–71%) were obtained with Bacillus thuringiensis subspecies aizawai (11A), Bacillus thuringiensis, subsp. kurstaki, strain ABTS-351 (11A), and spinetoram (5). This rapid bioassay provided the grower with a ranking of insecticide efficacy for the control the DBM population for that farm site. These data allowed growers to make an informed decision on control quickly and plan for resistance management rotations for DBM that season.

2007 ◽  
Vol 42 (4) ◽  
pp. 582-588
Author(s):  
M.R. Abney ◽  
C.E. Sorenson ◽  
P.S. Southern

Foliar applications of 3 pyrethroid insecticides were made to flue-cured tobacco and compared with Bacillus thuringiensis Berliner (Bt) bait and sprays of acephate and spinosad for control of the tobacco budworm, Heliothis virescens (F.), in 2001, 2002, and 2003. Lambda-cyhalothrin, cyfluthrin, and bifenthrin provided significant control of tobacco budworm when compared with untreated checks in all 3 yrs; however, they were generally less efficacious than the other insecticides tested. The level of control among the pyrethroids differed significantly within years but was inconsistent from year to year. The severity of tobacco budworm feeding damage was recorded for individual plants in each treatment, and damage averaged over pyrethroid treatments was 54.17% lower than the untreated control in 2001 and 79.84% lower in 2003. Pyrethroid treatments had no impact on yield of cured leaf in 2001 or 2003 compared with controls. The use of pyrethroid insecticides in flue-cured tobacco will increase the selection pressure placed on tobacco budworm populations in North Carolina. As a result, resistance to this class of insecticides may develop at an accelerated rate.


Author(s):  
Jing Wang ◽  
Xiaobin Zheng ◽  
Jiangjiang Yuan ◽  
Shuaiyu Wang ◽  
Baoyun Xu ◽  
...  

Abstract The diamondback moth, Plutella xylostella L., is a worldwide crop pest that is difficult to control because of its ability to develop resistance to many insecticides. To provide a reference for resistance management of P. xylostella in China, the present study used a leaf-dip bioassay to monitor the resistance of P. xylostella to nine insecticides in eight regions of China. The results showed that P. xylostella had developed a high level of resistance to beta-cypermethrin (resistance ratio [RR] > 112), and moderate (RR < 40) to high levels of resistance to indoxacarb, abamectin, and chlorfluazuron. For chlorantraniliprole, RRs > 100 were found in Midu (Yunnan Province) and Jinghai (Tianjin). In most regions, the resistance to spinetoram and chlorfenapyr and Bacillus thuringiensis (Bt) was low. No resistance was detected to diafenthiuron. Overall, P. xylostella resistance to insecticides was higher in Midu than in other regions. The data in this study should help guide the selection of insecticides for management of P. xylostella in China.


2010 ◽  
Vol 11 (1) ◽  
pp. 32 ◽  
Author(s):  
Christian A. Wyenandt ◽  
Steven L. Rideout ◽  
Beth K. Gugino ◽  
Margaret T. McGrath ◽  
Kathryne L. Everts ◽  
...  

Foliar diseases and fruit rots occur routinely on tomato, an important crop grown throughout the Mid-Atlantic and Northeast regions of the United States where it is produced for both fresh-market and processing. To enable these tomato growers to more effectively manage economically important diseases, a fungicide resistance management table has been developed which promotes the importance of understanding FRAC (Fungicide Resistance Action Committee) codes and provides an integrated pest management tool for tomato growers which will allow them to develop season-long disease control programs with an emphasis on fungicide resistance management. Accepted for publication 19 July 2010. Published 27 August 2010.


2011 ◽  
Vol 64 ◽  
pp. 119-124 ◽  
Author(s):  
A.H. McKay ◽  
G.C. Hagerty ◽  
G.B. Follas ◽  
M.S. Moore ◽  
M.S. Christie ◽  
...  

Succinate dehydrogenase inhibitor (SDHI) fungicides are currently represented in New Zealand by eight active ingredients bixafen boscalid carboxin fluaxapyroxad fluopyram isopyrazam penthiopyrad and sedaxane They are either currently registered or undergoing development in New Zealand for use against a range of ascomycete and basiodiomycete pathogens in crops including cereals ryegrass seed apples pears grapes stonefruit cucurbits and kiwifruit These fungicides are considered to have medium to high risk of resistance development and resistance management is recommended by the Fungicide Resistance Action Committee (FRAC) in Europe Guidelines are presented for use of SDHI fungicides in New Zealand to help avoid or delay the development of resistance in the fungal pathogens that they target


2008 ◽  
Vol 98 (2) ◽  
pp. 145-157 ◽  
Author(s):  
N.M. Endersby ◽  
P.M. Ridland ◽  
A.A. Hoffmann

AbstractWhen strong directional selection acts on a trait, the spatial distribution of phenotypes may reflect effects of selection, as well as the spread of favoured genotypes by gene flow. Here we investigate the relative impact of these factors by assessing resistance to synthetic pyrethroids in a 12-year study of diamondback moth, Plutella xylostella, from southern Australia. We estimated resistance levels in populations from brassicaceous weeds, canola, forage crops and vegetables. Differences in resistance among local populations sampled repeatedly were stable over several years. Levels were lowest in samples from weeds and highest in vegetables. Resistance in canola samples increased over time as insecticide use increased. There was no evidence that selection in one area influenced resistance in adjacent areas. Microsatellite variation from 13 populations showed a low level of genetic variation among populations, with an AMOVA indicating that population only accounted for 0.25% of the molecular variation. This compared to an estimate of 13.8% of variation accounted for by the resistance trait. Results suggest that local selection rather than gene flow of resistance alleles dictated variation in resistance across populations. Therefore, regional resistance management strategies may not limit resistance evolution.


Sign in / Sign up

Export Citation Format

Share Document