scholarly journals Host-Feeding Patterns of the Mosquito Assemblage at Lomas Barbudal Biological Reserve, Guanacaste, Costa Rica

Author(s):  
Patrick L Gilkey ◽  
Diana L Ortiz ◽  
Tia Kowalo ◽  
Adriana Troyo ◽  
Laura K Sirot

Abstract Mosquito-borne pathogens have spread throughout tropical regions of the Western Hemisphere causing increased burden of disease in the region. Outbreaks of dengue fever, yellow fever, chikungunya, West Nile, and Zika have occurred over the past several years. Mosquito blood-feeding patterns need to be assayed to assist in determining which vertebrates could act as hosts of these mosquito-borne pathogens and which mosquito species could act as vectors. We conducted bloodmeal analyses of mosquitoes collected at Lomas Barbudal Biological Reserve, a dry tropical forest reserve in Costa Rica. Mosquitoes were collected using backpack aspirators and light, gravid, and resting traps, and then identified morphologically. Blood-fed mosquitoes underwent DNA extraction, PCR amplification, and sequencing of the vertebrate cytochrome b and cytochrome c oxidase 1 genes to identify vertebrate bloodmeal hosts. Several mosquitoes known to vector pathogens were found including Culex (Melanoconion) erraticus Dyar & Knab (Diptera: Culicidae), Cx. (Mel.) pedroi Sirivanakarn & Belkin, Aedes (Stegomyia) albopictus Skuse, Ae. (Ochlerotatus) scapularis Rondani, Ae. (Och.) serratus Theobald, and Ae. (Och.) taeniorhynchus Wiedemann. The most common bloodmeal hosts were basilisk lizards (Basiliscus vittatus) Wiegmann (Squamata: Corytophanidae) in Culex (Linnaeus) species and white-tailed deer (Odocoileus virginianus) Zimmermann (Artiodactyla: Cervidae) in Aedes (Meigen) species. These results show the diversity of mosquito species in a tropical dry deciduous forest and identify associations between mosquito vectors and potential pathogen reservoir hosts. Our study highlights the importance of understanding interactions between vector species and their hosts that could serve as predictors for the potential emergence or resurgence of mosquito-borne pathogens in Costa Rica.

Insects ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 848
Author(s):  
Sonia Cebrián-Camisón ◽  
Josué Martínez-de la Puente ◽  
Jordi Figuerola

Aedes invasive mosquitoes (AIMs) play a key role as vectors of several pathogens of public health relevance. Four species have been established in Europe, including Aedes aegypti, Aedesalbopictus, Aedes japonicus and Aedes koreicus. In addition, Aedes atropalpus has been repeatedly recorded although it has not yet been established. In spite of their importance in the transmission of endemic (e.g., heartworms) and imported pathogens (e.g., dengue virus), basic information of parameters affecting their vectorial capacity is poorly investigated. The aim of this study is to review the blood feeding patterns of these invasive mosquito species in Europe, summarizing available information from their native and introduced distribution ranges. The feeding patterns of mosquitoes constitute a key parameter affecting the contact rates between infected and susceptible hosts, thus playing a central role in the epidemiology of mosquito-borne pathogens. Our results highlight that these mosquito species feed on the blood of different vertebrate groups from ectotherms to birds and mammals. However, humans represent the most important source of blood for these species, accounting for 36% and 93% of hosts identified for Ae. japonicus and Ae. aegypti, respectively. In spite of that, limited information has been obtained for some particular species, such as Ae. koreicus, or it is restricted to a few particular areas. Given the high vector competence of the four AIM species for the transmission of different emerging arboviruses such as dengue, Chikungunya, Zika or Yellow fever viruses and their high feeding rates on humans, these AIM species may have an important impact on the vectorial capacity for such pathogens on urban and periurban areas. Finally, we propose directions for future research lines based on identified knowledge gaps.


1997 ◽  
Vol 87 (6) ◽  
pp. 633-641 ◽  
Author(s):  
J. W. Wekesa ◽  
B. Yuval ◽  
R. K. Washino ◽  
A. M. de Vasquez

AbstractThe blood feeding patterns of Anopheles freeborni Aitken and Culex tarsalis Coquillett were studied, and the effects of host availability on these patterns were assessed in four different habitats within a northern California rice agroecosystem. Resting mosquitoes were collected from June to September of 1991 and 1992. The source of mosquito blood meals was identified with the modified precipitin test. Anopheles freeborni exhibited a ‘specialized’ (fixed) blood feeding pattern, predominantly (99% of the time) feeding on mammalian hosts; leporids and bovids were the major hosts, while equines, suids, and other mammals were minor hosts. Culex tarsalis exhibited a more ‘generalized’ (catholic) blood feeding pattern, taking blood meals from both birds and mammals at a ratio of 3:1 with Passeriformes being the most fed upon host group. Human blood indices were under 3% for both mosquito species, and multiple blood meals were estimated at less than 2%. The host feeding patterns for both mosquito species differed among the four (riparian, rice, pasture and mixed) habitats. The host feeding pattern for C. tarsalis reflected the distribution of both mammalian and avian hosts available. On the contrary, the host feeding patterns for A. freeborni reflected the distribution of mammalian but not the available avian hosts. Overall, host availability may be an important determinant of population size of some mosquito taxa (e.g. A. freeborni) than others (e.g. C. tarsalis) in rice culture agroecosystems.


2021 ◽  
Author(s):  
Kara M Fikrig ◽  
Elisabeth Martin ◽  
Sharon Dang ◽  
Kimberly St Fleur ◽  
Henry Goldsmith ◽  
...  

Aedes albopictus is a competent vector of numerous pathogens, representing a range of transmission cycles involving unique hosts. Despite the important status of this vector, variation in its feeding patterns is poorly understood. We examined the feeding patterns of Ae. albopictus utilizing resting collections in Long Island, New York, and contextualized blood meal sources with host availability measured by household interviews and camera traps. We identified 90 blood meals, including 29 human, 22 cat, 16 horse, 12 opossum, 5 dog, 2 goat, and 1 rabbit, rat, squirrel and raccoon. Our study is the first to quantitatively assess Ae. albopictus feeding patterns in the context of host availability of wild animals in addition to humans and domestic animals. Host feeding indices showed that cats and dogs were fed upon disproportionately often compared to humans. Forage ratios suggested a tendency to feed on cats and opossums and to avoid raccoons, squirrels, and birds. This feeding pattern was different from another published study from Baltimore, where Ae. albopictus fed more often on rats than humans. To understand if these differences were due to host availability or mosquito population variation, we compared the fitness of Long Island and Baltimore Ae. albopictus after feeding on rat and human blood. In addition, we examined fitness within the Long Island population after feeding on human, rat, cat, horse, and opossum blood. Together, our results do not show major mosquito fitness differences by blood hosts, suggesting that fitness benefits do not drive Northeastern Ae. albopictus feeding patterns.


Author(s):  
Julian E. Garcia-Rejon ◽  
Juan-Carlos Navarro ◽  
Nohemi Cigarroa-Toledo ◽  
Carlos M. Baak-Baak

Aedes (Stegomyia) albopictus is a mosquito native to Southeast Asia. Currently, it has a wide distribution in America where natural infection with arboviruses of medical and veterinary importance has been reported. In spite of their importance in the transmission of endemic arbovirus, basic information of parameters affecting their vectorial capacity is poorly investigated. The aim of the work was to update the distribution range of Ae. albopictus in the Americas, review the blood-feeding patterns and compare the minimum infection rate (MIR) of the dengue virus (DENV) between studies of vertical and horizontal transmission. The current distribution of Ae. albopictus encompasses 21 countries in the Americas. Extensive review has been conducted for the blood-feeding patterns of Ae. albopictus. The results suggest that the mosquito is capable of feeding on 16 species of mammals and five species of avian. Humans, dogs, and rats are the most common host. Eight arboviruses with the potential to infect humans and animals have been isolated in Ae. albopictus. In the United States of America (USA), Eastern equine encephalitis virus, Keystone virus, La Crosse Virus, West Nile virus, and Cache Valley virus were isolated in the Asian mosquito. In Brazil, Mexico, Colombia, and Costa Rica, DENV (all serotypes) has been frequently identified in field-caught Ae. albopictus. Overall, the estimated MIR in Ae. albopictus infected with DENV is similar between horizontal (10.95) and vertical transmission (8.28). However, in vertical transmission, there is a difference in the MIR values if the DENV is identified from larvae or adults (males and females emerged from a collection of eggs or larvae). MIR estimated from larvae is 14.04 and in adults is 4.04. In conclusion, it has to be highlighted that Ae. albopictus is an invasive mosquito with wide phenotypic plasticity to adapt to broad and new areas, it is highly efficient to transmit the DENV horizontally and vertically, it can participate in the inter-endemic transmission of the dengue disease, and it can spread zoonotic arboviruses across forest and urban settings.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 755
Author(s):  
Silvana F. de Mendonça ◽  
Marcele N. Rocha ◽  
Flávia V. Ferreira ◽  
Thiago H. J. F Leite ◽  
Siad C. G. Amadou ◽  
...  

The emergence of new human viral pathogens and re-emergence of several diseases are of particular concern in the last decades. Oropouche orthobunyavirus (OROV) is an arbovirus endemic to South and Central America tropical regions, responsible to several epidemic events in the last decades. There is little information regarding the ability of OROV to be transmitted by urban/peri-urban mosquitoes, which has limited the predictability of the emergence of permanent urban transmission cycles. Here, we evaluated the ability of OROV to infect, replicate, and be transmitted by three anthropophilic and urban species of mosquitoes, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. We show that OROV is able to infect and efficiently replicate when systemically injected in all three species tested, but not when orally ingested. Moreover, we find that, once OROV replication has occurred in the mosquito body, all three species were able to transmit the virus to immunocompromised mice during blood feeding. These data provide evidence that OROV is restricted by the midgut barrier of three major urban mosquito species, but, if this restriction is overcome, could be efficiently transmitted to vertebrate hosts. This poses a great risk for the emergence of permanent urban cycles and geographic expansion of OROV to other continents.


2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Jessica Börstler ◽  
Hanna Jöst ◽  
Rolf Garms ◽  
Andreas Krüger ◽  
Egbert Tannich ◽  
...  

Author(s):  
Julian E. Garcia-Rejon ◽  
Juan Carlos Navarro ◽  
Nohemi Cigarroa-Toledo ◽  
Carlos M. Baak-Baak

The aim of the work was to update the distribution range of Aedes (Stegomyia) albopictus Skuse in the Americas, review the blood-feeding patterns and compare the minimum infection rate (MIR) of the dengue virus (DENV) between studies of vertical and horizontal transmission. The current dis-tribution of Ae. albopictus encompasses 21 countries in the Americas. Extensive review has been conducted for the blood-feeding patterns of Ae. albopictus. The results suggest that the mosquito is capable of feeding on 16 species of mammals and five species of avian. Humans, dogs, and rats are the most common host. Eight arboviruses with the potential to infect humans and animals have been isolated in Ae. albopictus. In the United States of America (USA), Eastern equine encephalitis virus, Keystone virus, La Crosse Virus, West Nile virus, and Cache Valley virus were isolated in the Asian mosquito. In Brazil, Mexico, Colombia, and Costa Rica, DENV (all serotypes) has been frequently identified in field-caught Ae. albopictus. Overall, the estimated MIR in Ae. albopictus infected with DENV is similar between horizontal (10.95) and vertical transmission (8.28). However, in vertical transmission, there is a difference in the MIR values if the DENV is identified from larvae or adults (males and females emerged from a collection of eggs or larvae). MIR es-timated from larvae is 14.04 and in adults is 4.04. In conclusion, it has to be highlighted that Ae. albopictus is an invasive mosquito with wide phenotypic plasticity to adapt to broad and new areas, it is highly efficient to transmit the DENV horizontally and vertically, it can participate in the inter-endemic transmission of the dengue disease, and it can spread zoonotic arboviruses across forest and urban settings.


2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


Author(s):  
B. L. Brady

Abstract A description is provided for Aschersonia aleyrodis. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Scale insects (Coccidae) and whitefly (Aleyrodidae). GEOGRAPHICAL DISTRIBUTION: Costa Rica, Cuba, India, Jamaica, Santo Domingo, Solomon Islands, USA. According to Mains (1959) A. aleyrodis is very common in the Western hemisphere whereas A. placenta is common in the Eastern hemisphere. DISEASE: When the genus Aschersonia Montagne was described in 1848 the species were regarded as parasites of the leaves of the plants on which the insect hosts were located and it was only in 1894 that Webber recognized A. aleyrodis as entomogenous. Early work and the relationship with the ascomycete genus Hypocrella is extensively treated and illustrated in colour by Petch (1921). Sutton (1980) states that approximately 50 taxa have been described in the genus which is wholly entomogenous. Infection is mainly of young larvae, but mature larvae and pupae are also attacked. Larvae in the early stages of infection become swollen and by the time that hyphae emerge around the edge of the infected host the latter is already dead.


Sign in / Sign up

Export Citation Format

Share Document